
 

Abstract— In this paper, we proposed an online 2D 

localization method for tracking of dynamic moving brain 

sources. For this purpose, we used an adaptive version of 

PARAllel FACtor (PARAFAC) analysis for factorization of 

electroencephalographic (EEG) signals. We utilized Boundary 

Element Method (BEM) with four layers to solve the forward 

problem for the simulated EEG signals caused by two moving 

dipoles within the brain. Then, we created an appropriate 

tensor built by second order statistics of EEG signals. We 

adopted an online method to brain source localization called 

the Recursive Least Squares Tracking (RLST) as an adaptive 

PARAFAC algorithm with two windowing schemes. Finally, we 

evaluated the performance of the method applied to EEG 

signals. 

I. INTRODUCTION 

EEG is a non-invasive and low cost means to record brain 
activities and has numerous clinical, psychological and 
biomedical applications. Usually, existence abnormalities 
such as seizures and tumor change the intensity and location 
of activity in specific brain regions. These types of signal 
variations can be separated and localized, as 2D topoplots on 
the scalp, by EEG source localization algorithms [1]. 

A successful EEG source localization process has two 
most important phases. First, the forward problem which 
aims to estimate the scalp potentials from the current sources 
in the brain. Second, the inverse problem which aims to 
approximation of source locations from scalp potential 
measurements [2]. 

The forward problem needs the geometric model of the 
volume conduction that should be as much as possible close 
to the human head electrical characteristics. One of the well-
known methods called Boundary Element Method (BEM) 
has been used to implement the forward process with the 
assumption of having uniform electrical conductivities for 
three or four layers of brain materials. 

The EEG inverse problem is identified as being an ill-
posed problem because of having non-unique and unstable 
solutions. Two types of approaches, such as single dipole 
and linear distributed current source fitting methods, have 
been suggested to address this issue and finally providing the 
3D location of sources [3]. 

In the inverse problem, we need to estimate the unknown 
sources of mixed EEG data and it is similar to the Blind 
Source Separation (BSS) problem. In the BSS framework, 
the unknown sources and the mixing matrix will be obtained 
through the mixture signals. Each row of the mixing matrix 
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shows the level of closeness of each source signal to 
different electrodes. With this simple concept, a 2D 
localization of the sources has been addressed by using 
topography interpolation algorithms in both online and 
offline scenarios. Online brain source localization can have 
beneficial uses in some special areas, such as Brain-
Computer Interface (BCI). 

Independent Component Analysis (ICA) based methods 
are more widely used in solving the BSS problem. However, 
most of the ICA based algorithms require a pre-whitening 
process as a time consuming process which needs the whole 
mixture signal is available [4]. Consequently, the majority of 
ICA algorithmsare not suitable for the online applications. In 
addition, they generally estimate the demixing matrix, as 
inverse of the mixing system, and therefore the mixing 
matrix is estimated indirectly [5].  

On the other hand, the tensor factorization methodology is 
a promising and effective technique to tackle the BSS 
problem by estimating the mixing matrix directly [1]. The 
tensor factorization algorithms are mostly based on the 
generalizations of two-way decomposition models to the 
third-order and higher-order signals. There are several 3-
way, or more generally n-way, the factorization algorithms 
for factorization of the data such as PARAllel FACtor 
(PARAFAC) analysis. 

In the real-time and online the BSS applications the 
PARAFAC and other tensor factorization methods, in the 
lack of need to the pre-whitening process, need less 
computational cost, compared to the ICA based algorithms. 

This paper is organized as follows: In Section II, we 
present the structure of the adaptive PARAFAC algorithm. 
Section III, discusses about how to generate the tensorial 
data using the forward model. The experiments and results 
are provided in Section IV. Finally, the paper is concluded in 
Section V. 

II. ADAPTIVE PARAFAC 

The PARAFAC method, also known as Canonical 
Decomposition (CANDECOMP), is a generalization of a 
low rank decomposition of matrices to the higher order 
arrays or the tensors and a powerful multilinear algebra tool. 
A significant feature of PARAFAC is that its factors are 
essentially unique under the mild conditions. In this paper, 
the third-order tensors will be employed.  

The PARAFAC [6] decomposes a tensor 𝝌 ∈ ℝ𝐼×𝐽×𝐾   
into a sum of 𝑅 rank-1 tensors, where 𝑅 represents the 
smallest number of rank-one tensors as below 

 
 𝝌 = ∑ 𝐚𝑟 ∘ 𝐛𝑟 ∘𝑅

𝑟=1 𝐜𝑟  (1) 
 
Where 𝐚𝑟, 𝐛𝑟 , 𝐜𝑟  are columns of factor matrices 𝐀 ∈ ℝ𝐼×𝑅, 
𝐁 ∈ ℝ𝐽×𝑅 and 𝐂 ∈ ℝ𝐾×𝑅, respectively, and ∘ denotes the 
outer vector product. The PARAFAC decomposition can 
also be expressed in the matrix format. The matrix-wise 
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version of (1) could be presented through unfolding the 

tensor 𝝌 ∈ ℝ𝐼×𝐽×𝐾  on possible modes such as 𝐗(1) ∈ ℝ𝐼𝐾×𝐽, 

𝐗(2) ∈ ℝ𝐼𝐽×𝐾 and  𝐗(3) ∈ ℝ𝐽𝐾×𝐼 denoted by  [𝐗(1)](𝑖−1)𝐾+𝑘,𝑗 

, [𝐗(2)](𝑗−1)𝐼+𝑖,𝑘 = 𝑥𝑖𝑗𝑘  and [𝐗(3)](𝑘−1)𝐽+𝑗,𝑖 = 𝑥𝑖𝑗𝑘, 

respectively. Where, [𝐗]
𝑖,𝑗

 denotes the (i,j)th element of 

the matrix X.  
In order to estimate the PARAFAC factors (A, B, C) the 

Alternating Least Squares (ALS) is a standard and widely 
used method. The ALS process leads to perform the 
following alternating process until convergence: 
 
 𝐁 = 𝐗(𝟏)((𝐀 ⊙ 𝐂)𝐓)† 

𝐂 = 𝐗(𝟐)((𝐁 ⊙ 𝐀)𝐓)† 

𝐀 = 𝐗(𝟑)((𝐂 ⊙ 𝐁)𝐓)† 

 
(2) 

 
where ⊙ , (. )𝑇and (.)† denote the Khatri-Rao product, the 
transpose operator and the pseudo-inverse operation, 
respectively. 

The expansion of adaptive algorithms to track the 
PARAFAC decomposition is an important step towards real-
time PARAFAC-based applications. The authors in [7] 
suggested adaptive PARAFAC algorithm with two types of 
windowing schemes. In their algorithm, the observed tensor 
at time 𝑡 + 1 being obtained from the old one after 
appending a new slice along the time dimension and 
previously calculated factors are used to estimate new ones. 
This scenario leads to reduce the computational cost 
compared to the case which applys the standard batch mode 
PARAFAC repetitively. Therefore, real-time systems with 
serially acquiring data are potential applications of this 
method. 

The Recursive Least Squares Tracking (RLST) 
PARAFAC method is developed based on a weighted least-
squares recursive algorithm with two exponential and 
truncated windowing schemes. These windows determine 
the range of computing so that, with a forgetting factor, all 
previously observed slices have a different weight to 
influence the estimated factors. In truncated window 
scheme, the window has a fixed length that should be larger 
than the rank of the tensor [7]. 

Let a third-order tensor   𝝌 ∈ ℝ𝐼×𝐽×𝐾   , at time 𝑡, and 
considering the Eq. (2) we have,  
 
  𝐗(1)(𝑡) ≃ 𝐇(𝑡)𝐁𝑇(𝑡) (3) 

 
where 𝐇(t) = 𝐀(t) ⊙ 𝐂(t) has dimensions 𝐼𝐾 × 𝑅 , 𝐁(t) ∈
ℝ𝐽(𝑡)×𝑅 has a dimension growing with time and 𝐗(1)(t) ∈
ℝ𝐼𝐾×𝐽(𝑡). The main purpose of this algorithm is estimating of 
recursive updates for 𝐀(𝑡 + 1), 𝐁(𝑡 + 1) and 𝐂(𝑡 + 1) from 
old estimates 𝐀(𝑡), 𝐁(𝑡) and 𝐂(𝑡). Let 𝑿(𝑡 + 1) be obtained 

from 𝐗(1)(𝑡) after appending 𝐱(𝑡 + 1) (as vectorized 
representation of the new slice) in the time dimension, such 
as: 
 
 𝐗(1)(𝑡 + 1) = [𝐗(1), 𝐱(t + 1)] (4). 

 
The overall cost function with exponential windowing 

(EW) scheme has been considered as follows. 
 
 𝜙𝐸𝑊(𝑡 + 1) = 

∑ 𝜆𝑡+1−𝜏‖𝐗(𝜏) − 𝐇(𝑡 + 1)𝐛𝑇(𝜏)‖2

𝑡+1

𝜏=1

 

 
(5) 

 

Where 𝜆 is the forgetting factor and results the weighted 
observed matrix by: 
 
 𝐗𝐸𝑊(𝑡 + 1) = 𝐗(1)(𝑡 + 1)𝚲(𝑡 + 1) (6) 

 
Where 𝚲(𝑡 + 1) = 𝑑𝑖𝑎𝑔([𝜆𝑡/2, 𝜆𝑡−1/2, … , 𝜆1/2, 1]) is the 
weighting matrix.  

Likewise, we have below definitions for truncated 
windowing (TW) scheme: 
 
 𝜙𝑇𝑊(𝑡 + 1) = 

∑ 𝜆𝑁−𝜏‖𝐱(𝑢 + 𝜏) − 𝐇(𝑡 + 1)𝐛𝑇(𝑢 + 𝜏)‖2

𝑁

𝜏=1

 

 
(7) 

 
Where 𝑢 = 𝑡 + 1 − 𝑁 that 𝑁 is the length of window (𝑁 >
𝑅) and 𝐁𝐸𝑊(𝑡 + 1) consists of the last 𝑁 rows of  𝐁(𝑡 + 1) .  

In the algorithm that uses TW scheme, the weighted 
observed matrix is defined as:  
 
 𝐗𝑇𝑊(𝑡 + 1) = 𝐗(1)(𝑡 + 1)𝚲(𝑡 + 1) (8) 

 
where 𝚲(𝑡 + 1) = 𝑑𝑖𝑎𝑔([𝜆𝑁−1/2, 𝜆𝑁−2/2, … , 𝜆1/2, 1]).  
More specifically the RLST-PARAFAC estimates 𝒃(𝑡 + 1) 
and consequently  𝐇(𝑡 + 1)  by solving  ∇𝜙(𝑡 + 1) = 0 
where ∇ is gradient operator (see [7] for more details). 
In this paper, we setup a tensor data from stacking the called 
𝐗𝑘. Further description on assumed mixing model for 𝐗𝑘 is 
provided in the next subsection. 

III. GENERATING TENSORIAL DATA USING   

FORWARD MODEL 

In order to evaluate the online localization of moving 
brain sources, we planned to setup the simulated moving 
sources within a simulated head model. To this end, we 
needed to compute the resistive network within the head 
using the Lead Field Matrix (LFM) that models the 
relationship between dipole position, the head geometry and 
the tissue conductivity of the simulated head. 
The prerequisite for the calculation of the LFM is a head 
model. 

In this paper, we used BEM as a numerical tool to 
compute the head model parameters to solve the forward 
problem. Consequently we embedded two moving dipole 
sources on resulted 3D grid points located on the simulated 
head model. Then, the generated EEG data after calculating 
scalp projections of two dipole sources was employed to 
generate the segmented EEG signals 𝐗𝑘 . All mentioned 
numerical calculations was done by the freely available 
Matlab based Neuroelectromagnetic Forward Modeling 
Toolbox (NFT) [8]. Based on the BSS approach, each 𝐗𝑘 
can be decomposed to the mixing (𝐀)  and source matrix 
(𝐒𝑘) as 𝐗𝑘 =  A𝐒𝑘. Having the independent zero-mean 
sources results diagonal source covariance matrices 𝐃𝑘 as,  

 
 𝐃𝑘 = 𝐒𝑘𝐒𝑘

T (9). 
 

Therefore, the mixture covariance matrices can be shown 

as 𝐑𝑘 = 𝐗𝑘𝐗k
T = 𝐀𝐃𝑘 𝐀𝑇 .which is one slice of a trilinear 

tensor 𝑹. Applying the RLST-PARAFAC to the resulted 
growing trilinear tensor 𝑅 ∈ ℂ𝐼×𝐽×𝐼 ,built by stacking 
symmetric 𝐑𝑘 matrices, results identical 𝐀, 𝐂 matrices 
(representing the mixing matrix) and 𝐁 (which is the result 
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Fig 1. Schematically show how to generate three dimontonaol EEG data a) Concept of temporal segmentation, overlap and covariance matrix 
and b) Concept of adaptive PARAFAC with truncated and exponential window 

 

 

a) 

b) 

 

Fig 2. The trajectory of dynamic moving dipoles and their momentums 

within the 3D head model. Nose is along the positive direction of x-axis 

 

of stacking diagonal vector of 𝐃𝑘 s and representing the 
power of sources in each EEG segment) [9]. 

Moreover, to generate more realistic simulated EEG we 
have chosen head model with four layers created from T1 
weighted Montreal Neurological Institute (MNI) template. 
Furthermore, 128 electrodes placed on the simulated scalp 
using standard 10-20 system. The conductivities of different 
layers were chosen as 0.33, 0.0132, 0.33 and 1.79 (S/m) for 
the scalp, skull, brain and CSF respectively. Finally, near 
50000 grid points with 4 (mm)  inter-grid distance were 
generated by the NFT toolbox. 

The simulated Theta (4-8 (Hz)) and Alpha rhythms (8-12 
(Hz)) source signals were generated and located on the 
trajectories passing through sequential 3D gridpoints to 
produce the EEG scalp potentials.  

The dipoles were placed in the left-temporal and central-
occipital cortex as the starting points of two trajectories. 
Then, two dipoles moved over one quarter of the circle 
inside the brain. Fig. 1 shows one of possible trajectory sets 
and details of rotational and translational parameters. The 
trajectories  shown in Fig. 1 were chosen due to the fact that 
Visual Evoked Potentials (VEP) and Steady-State Visually 
Evoked Potentials (SSVEP) are generally appeared in these 
areas[10].  

Finally, two minutes EEG signal, including two moving 
brain rhythm sources, were generated with 2000 (Hz) 
sampling frequency. 

In order to take the benefits of RLST tensor factorization 
algorithm, the 2D simulated EEG must be converted to a 
third order tensor. In a similar study [11], a time-frequency 
analysis was applied for creating the tensor from one moving 
source data, whereas, as we mentioned before, we employed 
simulated EEG data obtained from two moving sources for 
creating tensor with space-time-space structure without need 
of transforming to the frequency domain. For this purpose, 
as the first step, a temporal EEG segmentation process (e.g. 
with segment length 340 (ms) ‘and 240 (ms) overlap) has 
been employed resulting 𝝌128×500×128. 

The length of segments and overlap must be chosen with 
respect to the sampling frequency, maximum frequency of 
source signals (to achieve the source covariance matrices 
with less off-diagonal elements), and the minimum time of 
having quasi-stationary mixing matrix 𝐀. Fig. 2a  shows the 
processes of generation and the factorization of the EEG 
tensor data. 

As it can be seen at Fig. 2b, the new covariance matrix of 
input EEG signals are entered in an operational  window (as  
a queue of the covariance matrices with the fixed number of 

items in the TW scheme and with the whole received items 
in the EW scheme) for the implementation of the online 
brain source localization algorithm.  In the EW scheme, the 
weights are set such that the new data have the greatest 
impact in the cost function 𝜙𝐸𝑊whereas in TW scheme has a 
fixed size operational window such that the new covariance 
matrix is added after removing the oldest matrix  

 
(see Fig.2b). The forgetting factor in both operational 
windows was chosen as 𝜆 =0.85. 

The topoplots related to the columns of 𝐀 (estimated by 
applying the online RLST tensor factorization algorithm at 
each step) shows the approximation of both source locations 
in 2D scalp map. Fig. 3 shows the original and the estimated 
location (by EW and TW schemes) of two sources along 
time (see Fig. 3). 

IV. EXPERIMENTAL RESULTS 

  In order to evaluate the performance of RLST based 
algorithms and for comparing two operational windowing 
schemes on brain source localization, we employed four 
metrics i.e. i.e. Channel Error (CE),  2D Error (2DE), Peak 
Signal-To-Noise Ratio (PSNR), and Normalized 2D 
Correlation Coefficient (N2DCC).These metrics were 
calculated for the results of several experiments on 
simulated EEG data built by different scalp projections that 
obtained by placing and moving two dipoles from the 
different starting points and different depths within the head 
model. Furthermore, in order to evaluate the robustness of 
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Fig 3. Comparison of topographic maps between original simulated data and results of RLST algorithm 

 

 

 

the algorithms to the additive Gaussian noise, each 
experiment has been done in the presence of the different 
noise levels (using simulated EEGs with different Signal-to-
Noise Ratio (SNR) levels). 

Fig. 3 shows the topographic results of one of the 
experiments that its EEG dipole source trajectories were 
shown at Fig. 1. Moreover, Table I shows averaged metrics 
of 10 different trajectories with 5 different randomly 
generated sources at three SNR levels (0dB-10dB-20dB).  

The overall results in Table I show that the TW scheme 
has shown better performance compared to the EW one.    
In addition, because of utilizing the second order statistics 
(covariance matrices) of EEG signals the whole localization 
algorithm is expected to be more robust against additive 
noise compared to the methods of dealing with EEG signals 
directly. Expectedly, the results of the experiments confirm 
this concept especially for the cases with SNR levels of 
10dB and 20dB. Also, it can be seen that even on the very 
noisy cases with 0dB SNR the metrics are still promising.  

V. CONCLUSIONS 

In this paper, we utilized an adaptive PARAFAC 
algorithm, with two operational windowing schemes, for 
localizing and tracking of dynamic EEG sources on 2D map 
of the scalp. To this end, we placed the sources on the grid 
points of a simulated head model, estimated from real MR 
images, and moved them through a predefined trajectory to 
create the related 128-channel EEG signal.   

Then, we used temporally segmented EEG signals to 
compute their covariance matrices and consequently build 
up the tensor data. In the next step, the RLST 
basedPARAFAC algorithm was applied to the growing 
tensor and the estimated factor A, after adding each new 
arriving covariance matrix, was reported as the mixing 
channel to localize the simulated sources online. The 
estimated tracks of sources were compared to the original 
ones by measuring four metrics i.e. channel error, 2D error, 
2D PSNR, and normalized 2D correlation coefficient. 
Promising results achieved in tracking of the simulated 
moving sources with different trajectories and in the 
presence of different level of added noise.      
In addition, we compared performance of both TW and EW 

windowing schemes and the TW scheme, with lower 

computational cost, showed better performance. As another 

striking feature of the proposed algorithm is noise-

robustness due to employing second order statistic. Further 

experiments and results over the real EEG signals also 

evaluating and comparing our results with the well-known 

online-ICA algorithms is under progress and will be reported 

in future publications. 

TABLE I.  THE NUMERICAL RESULTS FOR TWO WINDONWING SCHEME 

IN TERMS OF CHANNEL ERROR(CE), 2D ERROR(2DE), PSNR AND 

NORMALIZED 2D CORRELATION COEFFICIENT(N2DCC) 

Window Exponential Truncated 

noise 0dB 10dB 20dB 0dB 10dB 20dB 

CE -24.486 -39.671 -40.199 -30.848 -41.666 -42.071 

2DE -33.958 -47.091 -47.648 -39.146 -48.812 -49.291 

PSNR 30.289 35.694 36.330 32.050 36.343 36.939 

N2DCC 0.905 0.984 0.985 0.944 0.987 0.988 
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