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Abstract
Purpose Combination of various intraoperative imaging
modalities potentially can reduce error of brain shift estima-
tion during neurosurgical operations. In the present work, a
new combination of surface imaging andDoppler US images
is proposed to calculate the displacements of cortical surface
and deformation of internal vessels in order to estimate the
targeted brain shift using a Finite Element Model (FEM).
Registration error in each step and the overall performance
of the method are evaluated.
Methods The preoperative steps include constructing a
FEM fromMR images and extracting vascular tree fromMR
Angiography (MRA). As the first intraoperative step, after
the craniotomy andwith the dura opened, a designed checker-
board pattern is projected on the cortex surface and projected
landmarks are scanned and captured by a stereo camera (Int
J Imaging Syst Technol 23(4):294–303, 2013. doi: 10.1002/
ima.22064). This 3D point cloud should be registered to
boundary nodes of FEM in the region of interest. For this
purpose, we developed a new non-rigid registration method,
called finite element drift that is more compatible with the
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underlying nature of deformed object. The presented algo-
rithm outperforms other methods such as coherent point drift
when the deformation is local or non-coherent.After registra-
tion, the acquired displacement vectors are used as boundary
conditions for FE model. As the second step, by tracking a
2D Doppler ultrasound probe swept on the parenchyma, a
3D image of deformed vascular tree is constructed. Elastic
registration of this vascular point cloud to the corresponding
preoperative data results the second series of displacement
vector applicable to closest internal nodes of FEM.After run-
ning FE analysis, the displacement of all nodes is calculated.
The brain shift is then estimated as displacement of nodes
in boundary of a deep target, e.g., a tumor. We used intra-
operative MR (iMR) images as the references for measuring
the performance of the brain shift estimator. In the present
study, two set of tests were performed using: (a) a deformable
brain phantom with surface data and (b) an alive brain of an
approximately big dog with surface data and US Doppler
images. In our designed phantom, small tubes connected to
an inflatable balloon were considered as displaceable targets
and in the animal model, the target was modeled by a cyst
which was created by an injection.
Results In the phantom study, the registration error for the
surface points before FE analysis and for the target points
after runningFEmodelwere<0.76 and1.4mm, respectively.
In a real condition of operating room for animal model, the
registration error was about 1mm for the surface, 1.9mm for
the vascular tree and 1.55mm for the target points.
Conclusions The proposed projected surface imaging in
conjunction with the Doppler US data combined in a
powerful biomechanical model can result an acceptable
performance in calculation of deformation during surgical
navigation. However, the projected landmark method is sen-
sitive to ambient light and surface conditions and theDoppler
ultrasound suffers from noise and 3D image construction
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problems, the combination of these two methods applied on
a FEM has an eligible performance.

Keywords FED registration method · CPD · Finite
Element Model · Projected landmarks · Doppler ultrasound ·
Target registration error

Introduction

In recent two decades, image-guided surgery systems (IGSS)
have been widely used in neurosurgical operations. Improve-
ment in accuracy of surgery is the first result of using these
systems but when the skull is opened, the problem called
“brain shift” can inversely affect accuracy. Brain movements
and deformations are hardly predictable and surgeon should
estimate displacements mentally and by his/her experience.

Causes of brain deformations during surgery are usually
unknown and may be physical such as dura opening, change
in the pressure due to loss of cerebrospinal fluid (CSF) and
gravity or physiological such as swelling due to drugs, anes-
thesia or edema. Relating direction and amount of brain shift
to nature of pathology, patient’s age, craniotomy location is
difficult [2–4].

As shown in all studies, deformation mainly occurs in
the direction of gravity. Displacement can be downward due
to tissue weight and CSF drainage from ventricular system
or upward due to intracranial hypertension which may be
a result of tumor growth. Deformations are measured using
cortical landmarks or tumor region. The amplitudes reported
are widely variable from 15 to 24mm for cortical displace-
ments [2,4] and 8–31mm for tumor regions [5].

In commercial neuro-navigation systems, the complex
brain shift problem remains unresolved and usefulness of
these systems is limited to first stages of surgery before large
craniotomy or surgeries which need only small opening in
the skull. One way for correcting brain deformations is using
iMR imaging [6–8]. This solution has some limitation such
as its high cost and long image acquisition time that limits
the number of images which can be acquired during surgery
for tracking brain shifts.

In literature, we can find a number of solutions have
been proposed to update preoperative images with intra-
operative data. Earlier proposed methods were based on
warping preoperative images using image-based models. A
number of non-rigid registration methods provided to match
intraoperative images (mainly MRI) to preoperative ones
[9,10]. Recently, biomechanical models of brain have been
developed that can calculate volumetric deformations using
surface [11] or contours [12] displacements measured in reg-
istered images.

Unlike expensive iMR, some cheap solutions have been
proposed that use biomechanical models in conjunction with
low-cost intraoperative data such as cortical surface recov-
ered from laser-range scanners [13] or ultrasound images
[14]. Image-based methods need high-resolution intraoper-
ative images but in these methods, a proper biomechanical
model has a key role in the overall performance of system.
Also the model requires adequate validation against clinical
data.

Another approach which has been developed by some
researchers is using Doppler ultrasound to track the ves-
sels when the brain tissue is deformed [15,16]. When the
tumor growth leads to creation of new vessels around it [17],
Doppler US imaging seems to be useful for tracking tumor
margins. Using vessels displacements recovered by intraop-
erative 3D Doppler US imaging, Reinertsen et al. in [15]
tried to apply a physical thin plate spline (TPS) deformation
to preoperative images to correct brain shift. Bucki et al. in
[16] proposed a Finite Element Model (FEM) that computes
volumetric deformation of brain using sparse displacements
of vessels acquired from 2D Doppler US as the model loads.

Recently, researchers are more interested in biomechani-
cal models of brain based mainly on FE modeling. It allows
considering complex boundary condition of cortex and skull
and physical properties of tissue such as stiffness difference
between different parts of brain.

In earlier works, due to lack of proper load definitions
and high process power requirements that made it a time-
consuming method, FEM did not used in operating rooms.
By linearization of model and after improvements in proces-
sors, some researchers recommend it for real time surgeries.
The assumption of linear model is proper until the displace-
ments of brain tissue are small, but in many surgeries such
as tumor resections, the deformation is large and it cannot
be modeled by linear FEM. More recently, powerful GPU
processors make it possible that nonlinear FEMs can be used
for estimating brain shift [18]. However, all studies based
on FEM are focused on estimating brain deformation after
craniotomy, due to disruption of nodes in the model, none of
them models the resections. Few studies have been carried
out to model disruptions in FEM [19], but their computations
are more complex and inapplicable.

In the present work, we have proposed a framework for
estimating brain shift by combination of two sets of intraoper-
ative data: (a) cortical surface data recovered from scanning
projected landmarks (b) vascular tree images acquired by
DopplerUS data. Referring to previousworks done by author
of this paper [1,20], projecting landmarks to visible surface
in order to capture a point cloud of surface is an innova-
tive low-cost method that has adequate accuracy for surface
registration. Unlike ultrasound images known as noisy data
(compared to other modalities) and difficulties of segmenta-
tion of anatomic organs, the Doppler US seems to be more
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suitable for tracking vessels. The idea of combination of
these two different displacement measures into a biomechan-
ical model can significantly increase the overall accuracy of
brain shift estimator.We have attempted to examine this idea.
Our idea is near reality because in the biomechanical models
when the target points are far from observed deformations (as
the model input), the outputs of model would be less accu-
rate. If you prepare more sparse inputs from different areas,
the accuracy of outputs would be increased.

At first a phantom study and required procedures and
algorithms were implemented as a verification approach
to evaluate the proposed method before testing on animal
model. Because the simulation of detailed brain vasculature
and its blood circulation was difficult, the designed phantom
was only used for surface data acquisitions. However many
procedures such as 3D model construction, initialization of
FEM, tuning scanner of projected landmarks and develop-
ing non-rigid registration algorithm were performed in this
step of study. The registration algorithm named finite ele-
ment drift (FED) is a new non-rigid point matching method
which is based on elastic deformation concept used in finite
element analysis theory. The basic idea is to use a Bayesian
framework in which one point set presents Gaussian mixture
model (GMM) centroids and drifts toward the other point set
in a way which maximizes the likelihood of two point sets.
The process of point drift is under the constraint of stiffness
matrix of deformed object, and the force applied to each point
(node) is iteratively updated.

In order to carry on pre-clinical evaluation of the pro-
posed method, an animal study was performed. This step
is necessary before applying human experiments. All our
experiments on dogs were carried out under European Union
regulations; “Directive 86/609/EEC” on the protection of
animals used for experimental and other scientific purposes.
Finally, one dog was elected for head surgery and after doing
craniotomy and data acquisition he recovered safely.

In the rest of the paper, we explain methods of process-
ing preoperative images, building FEM, data acquisition, FE
analysis and calculating target registration error (TRE) as
measure of estimation accuracy. Results obtained for phan-
tom and animal model will be presented in detail.

Methods and materials

Overall procedure

Figure 1 shows the detailed schematic diagram of the overall
procedure proposed for the brain shift compensator as a part
of a neuro-navigation system. In the present study, wemainly
focused on brain shift estimation, and the compensation part
is still under study. The preoperative steps consist of captur-
ing MR and MRA images, the segmentation of the brain
followed by building FEM by smoothing and volumetric
meshing of the brain, and finally, the segmentation of ves-
sels from the collected MRA images. In the operating room,

Pre-operative

3D MRA Vascular Tree 
Extraction

Smoothing, Meshing and 
Constructing FEM

Segmentation of 
Brain

3D MRI

Intra-operative

Running FE Analysis
Computing Volumetric Deformation 

Boundary Nodes 
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Displacements

Pre-operative Images Deformation 

Update Navigator

Non-Rigid 
Registration

Non-Rigid 
Registration

Deformed Vascular 
Tree Point Cloud

Localized 2D 
Doppler US

Scanning Projected 
Landmarks on Cortical 

Surface

Stereo vision

Placement of Reference 
Frame on Tools, US probe and 

Patient

Calibration and Rigid 
Registration of Pre-
operative Images

Fig. 1 Schematic diagram of the overall procedure proposed for the brain shift compensator as a part of a neuro-navigation system
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after the calibration and rigid registration of the preoperative
images, two sets of sparse data were acquired and applied to
FEM as external forces to estimate whole brain deformation.
The first step involved projecting a designed checkerboard
pattern to the visible cortical surface to acquire a 3D point
cloud of projected landmarks using a stereo camera. Regis-
tering these points to the boundary nodes of FEM yielded
the displacement vectors of the cortical surface. The sec-
ond step involved the acquisition of 2D US Doppler images
using a probe that was swept on the parenchyma and tracked
by the stereo camera. The 3D point cloud of the segmented
vessels from the Doppler images was registered to its preop-
erative ones to determine sparse vessel displacement vectors.
Each vascular displacement vector was assigned to the near-
est internal node of FEM. By running FEM with boundary
and internal node displacements, the total volumetric defor-
mation was computed, and the displacement of the nodes on
the target, e.g., a tumor, can be calculated as the brain shift.

Brain phantom

Constructing a brain phantom is a difficult taskwhen one tries
to simulate all details of a real brain. We relied on our pre-
vious work that used a phantom in which the brain shift was
calculated based on the registration of MRI and US images
[21]. The idea of using the elasticity concept as a mecha-
nism for precise and repeatable deformation suitable for MR
or CT imaging was used as the minimum required specifi-
cations for our study. For Doppler US imaging, a simulated
vasculature may be considered, but it was difficult to create
small branches of vessels near the cortex using the phantom.
Therefore, we decided to use our simple phantom only for
surface data acquisition and processing.

Using polyvinyl alcohol cryo-gel (PVAc), a plastic tube,
and a balloon that was inflatable to a volume of 10ml, a phys-
ical phantom was molded and prepared for testing. Figure 2
shows the prepared phantom and its MR image after inflat-
ing to 10ml. Three series of experiments were performed
using an inflation volume of 0, 5, and 10ml, and MR images
and surface scan data were acquired for each case. The MRI
apparatus was a SIEMENS Avanto 1.5T scanner, and a stan-
dard T1-weighted scanning sequence at a voxel resolution of
0.78 × 0.78 × 0.8mm was applied.

FEM of the phantom was built from the MR images
that were captured before inflating the internal balloon. The
region of interest on the surface of the phantom (where it was
more inflated) was manually localized on FEM, and the cor-
responding boundary nodes were extracted as the first point
set. This took almost 220 points. Using the FED method,
this point set was registered to the point cloud captured
by the stereo camera. The number of captured points was
approximately 10 times greater than that of the first point
set, thus maximizing the probability of matching the sparse

FEM nodes to the corresponding points. To avoid overfitting
and to save time, the iterations of the registration algorithm
were terminated whenever the total error reduction rate was
<0.1%. The registration error for each point was defined as
the distance between that point and the nearest point in the
other point set.

The nodes on the small tubes connected to the balloon
were marked as target nodes. After surface registration, the
calculated displacement vectorswere applied toFEMto com-
pute the displacement of all nodes. Using a rigid-type CPD
algorithm, the deformed FEM was registered to the point
cloud of the 3DMR images captured after inflating the inter-
nal balloon. To evaluate our shift estimator, the TRE was
defined as the mean distance between the target nodes and
the nearest target points in the post-inflation 3DMR images.

Animal model

A large dog was utilized in the present study. To simulate
a target in its brain, the neurosurgeon suggested injecting
some water into parenchymal tissue to generate a cyst. The
injected water was expected to be absorbed within one day.
Prior to craniotomy, a small holewas created on the skull, and
approximately 3ml of water was injected to the parenchymal
tissue to create a medium-sized cyst.

After the acquisition of preoperative images, the operation
was started. The dog skull was thicker than that of humans;
therefore, the neurosurgeon could only open a small bore
in it. The visible surface of the cortex was approximately
3 × 4 cm. Figure 3 shows the dog during the operation and
a representative preoperative MR image.

After the acquisition of the proposed intraoperative data,
the animalwith an opened skull was directed to theMR imag-
ing machine to acquire images that were used for validating
our brain shift estimator. The MRI machine and the applied
imaging sequences were the same as those mentioned for the
phantom.

The initial steps of data analysis for the animalmodelwere
similar to that of the phantom, except for a smaller brain
volume and cortical surface. Processing of the animal data
was performed in three steps. In the first step, only surface
displacements were applied to the FE model, and the TRE
was computed.TRE was computed using the same method
described for the phantom study. Next, we applied only the
vessel displacements to the internal nodes of the preoperative
FEM. By applying a rigid registration between the surface
points of preoperativeMRAand the surface nodes of preoper-
ative model, the nearest internal nodes to the vascular points
were selected as candidates. After conducting FE analysis,
TRE was again computed. For the final step, we combined
the surface and vascular data sets of FEM. The results of each
step are presented in the Results section.
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Fig. 2 a A picture of brain
phantom and b the MR image of
it when the internal balloon
inflated 5ml, depicted in 3D
Slicer software

Initializing FE linear elastic model

Before building the FE model, the brain image was sub-
jected to segmentation. The segmentation of the brain affects
the accuracy of mesh generation and surface tracking. The
images were segmented using the 3D Slicer [22] software. In
the case of the phantom, the inflated balloon was easily seg-
mented. For the animal brain using a reference database of
animal anatomy, the major parts such as skull, parenchyma,
ventricles, and injected cyst were carefully segmented.

Smoothing segmented regions facilitates the generation
a fine volumetric mesh. Using the meshing software Iso-
Surf [23] and GMesh [24], the phantom and animal brain
were meshed to 7152 and 3718 tetrahedral elements, respec-
tively. Figure 4 shows a representative picture of the meshing
results.

The number of nodes and elements were usually much
less than the number of 3D image voxels. When we cre-
ated more elements in a certain volume, the computations
rapidly increased in a nonlinear manner, whereas the final
precision slightly changed. FEM-based studies [16,18] have
shown that a total of 15,000 elements were created to recon-
struct an entire human brain. It is therefore reasonable that
a total of 3718 elements were sufficient to create our ani-
mal model, which presented a much smaller brain volume
(approximately1/8).

When the deformation was is less than 10%, FEM can
be assumed to follow the linear elastic model (LEM) [16].
This assumption has also been determined to be true in
the present study. For the biomechanical parameters of the
model, various values for Young’s modules can be found in
the literature. Based on previous works [16], the parameters
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Fig. 3 a The dog under
operation and b a sample MR
image of its head

Epar = 700Pa and νpar = 0.42 were used for parenchyma
and Ecs f = 15Pa and νcs f = 0.05 for CSF. Due to its
circulation within ventricles, the CSFwasmodeled as a com-
pressiblemedium.Thefluid inside the balloon in the phantom
or simulated cyst in the animal brain was incompressible;
therefore, we assessed the physical parameters of the proxi-
mal parenchymal tissue.

Capturing surface data

The method used for scanning the surface was based on a
simple concept. A checkerboard pattern was projected to the
visible surface of the region of interest, and cross points of
the projected pattern (referred to as P-land hereafter) were
scanned by a stereo camera to calculate their 3D positions.

The stereo camera detects the cross points by processing the
images that were acquired by two sensors (left and right) and
recognizing the visual patterns that match the descriptors in a
marker template database. As shown in Fig. 5, it triangulates
the two projection lines associated with two image centers to
obtain the 3D position of desired point.

Theminimumdistance of P-landswas limited by the accu-
racy of camera. A more dense point cloud was thus acquired
by sweeping a projected pattern on the surface. The camera
that was used in the present study was the Micron Tracker of
Claron, Inc., under Parsiss Image-Guided Navigation1, and
the software developed in the previous studies conducted by

1 Parseh Intelligent Surgical Systems Parsiss Company, Tehran, Iran.
www.parsiss.com.
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Fig. 4 The meshed subvolume of phantom. The bores are inflated bal-
loon and tubes inside it

Fig. 5 The concept of triangulation for 3D position calculation

our group [1,20] were used to filter the outliers and dupli-
cated points.

Extracting vascular tree from MRA and doppler US
data

The preoperative MRA that was used for extracting the vas-
cular tree was a 3DTOF MRA that featured good contrast
quality. A gray level thresholding technique was applied to
these images in three steps. A threshold that generates the
maximum number of vessels that becomes visible was man-
ually adjusted, and the centerlines of vessels were selected.
Outliers were filtered by a proximity measure that discards
isolated segmented centerlines. Finally, for the consistency
of the results, the vascular tree was visually examined.

For constructing a Doppler US pseudo-volume, we gath-
ered a set of 2DDopplerUS images thatwere localized by the
stereo camera during data acquisition. Amarkerwas attached
to the US probe, and its 3D position was calibrated before
starting surgery. In each 2D image, after isolating colored
pixels from B-mode background, some connected pixels or
stains corresponding to vessels remained. Some artifacts due
to fast freehand motions of the probe were filtered. These
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Fig. 6 a Point cloud of vessels extracted fromMRA (red) and Doppler
US (blue), b sparse displacement vectors of vascular tree

usually have a larger area, and thus, we discarded these by
a threshold of 8mm2. Another problem was the heartbeat
that makes small vessels visible in one slice and invisible
in the next adjacent slice in space and time. In our animal
model, only a few stable centerlines of larger vessels were
segmented.

Figure 6 shows the two point clouds that corresponded to
the extracted vessels from the MRA and Doppler data and
the displacement vectors obtained after their registration.

Non-rigid registration method

Registration of preoperative images to intraoperative ones
was at the center of any brain shift estimation approach. In the
present study, we required a point matching method to find
the nodal displacements in the FE model. We thus developed
a non-rigid point matching algorithm that wasmore compati-
blewith the underlyingnature of the deformedobject.Among
the existing methods, the probabilistic ones such as TPS

123

Author's personal copy



Int J CARS

(a)

(b)

Fig. 7 aMyronenko’s (the CPD author) example of coherent deforma-
tion; All points matched exactly, b same example with a non-coherent
deformation generated by moving the top of object; points in the top
region were not matched exactly

robust point matching (TPS-RPM) [25] and coherent point
drift (CPD) [26] have shownbetter performance, although the
deformation method in these algorithms was based only on a
mathematical model in which its parameters were obtained
from image features. The CPD algorithm showed a generally
better performance, althoughwe observed that in some cases,
when the assumption of coherent movement was violated,
some errors were encountered. Figure 7 shows the famous
2D fish example where CPD showed some deficiency.

This section will describe our findings that a biomechani-
calmodel performs better for elastic objects. In our approach,
we followed the framework proposed by CPD authors, with
some modifications.

CPD review

In the CPD algorithm, the alignment of two point sets
was considered as a probability density estimation problem,
where one point set represents the GMM centroids and the
other one as the data points. The maximum of GMM pos-
terior probability is obtained when two point sets matched.
The following notations were employed:

• D : the dimension of point set (2 or 3)
• x1, . . . , xN : points in first point set (data points)
• y1, . . . , yM : points in second point set (GMM centroids)
• T(ym, θ) : transform T applied to ym , where θ is the set

of transformation parameters

The GMM probability density function is

p (x) = ω
1

N
+ (1 − ω)

M∑

m=1

P (m) p (x|m) (1)

where p (x|m) = 1

(2πσ 2)
D/2 e

− ‖x−y2m‖
2σ2 and P (m) = 1

M . The

first term is a uniform distribution is added to mixture model
(for m = M + 1) to account for noise and outliers (0 ≤ ω ≤
1).

Using the expectation maximization (EM) algorithm in a
Bayesian framework, at the E step, we computed the pos-
teriori probability distributions Pold(m|x) of the mixture
components, and at the M step, we estimated θ by mini-
mizing the negative log-likelihood:

Q
(
θ, σ 2

)

= −
N∑

n=1

M+1∑

m=1

Pold (m|xn) log
(
Pnew (m) Pnew (xn|m)

)

= 1

2σ 2

N∑

n=1

M∑

m=1

Pold (m|xn) ‖xn − T (ym, θ) ‖2

+NpD

2
log σ 2 (2)

where Np = ∑N
n=1

∑M
m=1P

old (m|xn) ≤ N , and

Pold (m|xn) = e
− 1

2

∥∥∥∥
xn−T(ym ,θold)

σold

∥∥∥∥
2

∑M
k=1e

− 1
2

∥∥∥∥
xn−T(yk ,θold)

σold

∥∥∥∥
2

+ c

(3)

where c = (
2πσ 2

)D/2 ωM
(1−ω)N .

In the non-rigid CPD method, the transformation of ym
points was defined as follows:

T (Y, v) = Y + v (Y ) (4)

where Y is the matrix of all ym points, and v(Y ) is a smooth
function that drifts ym points toward the xn points. The coher-
ent motion transformation in CPD algorithm is as follows:

T (Y, v) = Y + GW (5)

where G is a predefined Gaussian kernel matrix, and W is
the matrix of coefficients. We hereby propose a new smooth
function to replace the GW term in the above equation based
on the biomechanical features of a deformed object to more
accurately match the points in the deformed areas.
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New FED method

For a LEM, a linear equation:

F = KU (6)

relates the vector of external forces F to the vector of
displacements U , where K is the stiffness matrix. In this
equation, the displacements of nodes were assumed to be
small, and we want to use this assumption to write a smooth
function for movement of the ym points toward the xn points.
If ym points were considered as the nodes of a LEM, a small
movement (U = �Y ) would therefore be:

�Y = K−1F (7)

where YMD×1 = [
yT1 , . . . , yTM

]T
is a column vector with

M × D elements. Proper constraints on the LEM should
be applied to generate a non-singular K matrix. This can be
achieved when the number of supports or fixed nodes in the
model is greater than those of moving nodes. The authors of
the CPD algorithm also added a regularization term to the
likelihood function to enforce the smoothness of displace-
ments, although we claim that the proper K matrix would
ensure smoothness of movements. Therefore, the transfor-
mation would be as follows:

T (ym, θ) = ym + K−1
m F (8)

where K−1
m is a D × MD matrix of rows of K−1 corre-

sponding to ym . Substituting (8) in (2), the F vector, which
minimizes the negative log-likelihood, should satisfy the fol-
lowing equation:

N∑

n=1

M∑

m=1

Pold (m|xn) K−1T
m

(
xn − ym − K−1

m F
)

= 0 (9)

After computing for F , the best σ 2 can be obtained by equat-
ing the corresponding derivative of Q to zero:

σ 2 = 1

NpD

N∑

n=1

M∑

m=1

‖xn − ym − K−1
m F‖2 (10)

Equations (9) and (10) are the M-step of the EM algorithm.
We named this new non-rigid algorithm as the FED and
implemented this in the MATLAB software.

We tested some 2D and 3D point sets to compare the
performance of FED against CPD. Local deformations were
applied by displacing some neighbor points in a local area of
the point sets.

Before running FED, some nodes were fixed as sup-
port nodes of the LEM such that stiffness matrix becomes
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Fig. 8 Registration error for the FEDandCPDalgorithmswhen a local
deformation in about 10% of object is applied

non-singular. First, we started the CPD algorithm to align
two point sets. After some iteration, the points in the non-
deformed area were matched. We used these as the fixed
nodes and defined the K matrix element by element to ini-
tialize the FED algorithm. Then, CPD was continued, and
FED was started to match the same point sets.

Results

FED performance analysis

We tested all point sets provided and used by the CPD
authors. Figure 8 shows the registration errors obtained for
the CPD and our proposed FED algorithms.

The deformation level in this figure denotes the amount of
mean applied displacement. In all cases, the area in which the
deformation was applied was approximately 10% of whole
object. Similar to the settings described in the CPD paper, the
two point sets were normalized to zero mean and unit vari-
ance before registration. Therefore, the units were removed
from axis.

As shown in Fig. 8, when the amount of deformation was
small, CPD performs slightly better, but when the deforma-
tion was larger in the same area, FED outperformed it.

Phantom study

Mean errors that were calculated for the registration tasks in
the phantom study are shown in Table 1. Registration errors
for the target points are the measure of accuracies obtained
for the shift estimation.

Figure 9 shows the box plot of results that are shown in
Table 1. These results indicate that when the deformation
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Table 1 Registration errors obtained for the surface and target points in two inflation cases of the ballon inside the phantom, 5 and 10ml

Test no. Mean error for surface points (mm) Mean error for target points after FE analysis (mm)

5 ml 10 ml 5 ml 10 ml

1 0.48 0.61 1.27 1.41

2 0.66 0.90 1.44 1.63

3 0.83 1.06 1.70 1.92

4 0.39 0.54 0.84 1.03

5 0.54 0.68 1.31 1.18

Average 0.58 ± 0.17 0.76 ± 0.22 1.31 ± 0.31 1.43 ± 0.36
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Fig. 9 Registration error for the surface points (1 for 5ml and 2 for
10ml inflation) and target points (3 for 5ml and 4 for 10ml inflation)

increased due to the inflation, the registration errors for sur-
face and target slightly increased.

Animal model study

Registrations were performed by three non-rigid registration
methods, namely, TPS-RPM [24], CPD [25], and our pro-
posed FED. Table 2 shows themean errors for the registration
of surface and vascular points. It also shows TREs that were
computed after FE analysis using the surface data only, the
vessels data only, and finally, a combination of these meth-
ods.

The FEDmethod clearly outperformed the other twowell-
known methods. The results also showed that the accuracy

of registration affected the final error that was obtained for
the target points after the FE analysis.

The best registration error for the target points reached
1.55mm using the FED algorithm. The results of combina-
tionmethodwere clearly less than those obtained by applying
surface and vessels only data. These findings proved the effi-
ciency of our proposed idea of combining the two imaging
modalities in reducing the final registration error, thus sig-
nificantly improving brain shift estimation.

Discussion

In each step of the present study, we encountered several
challenging problems. Some of these problems in working
with phantomwere alreadyobserved and resolved inprevious
studies that were conducted by the authors of the present
report [1,21]. In this phantom study, the main difficulties
were related to the acquisition of surface data. Adjusting
ambient light and the reflections of light from the surface
were two important factors that affected the resolution of
the surface scan. In addition, these issues also rendered the
initial set up to be time consuming. However, several P-lands
that were captured by the 3D camera were treated as outliers
and should be deleted. Therefore, to acquire more reliable
data, the overall procedure can take more time than usual.
The main advantages of this method its cost-effectiveness
and the absence of contact.

The animal model study encountered more difficulties,
especially in theDoppler US data acquisition and processing.
Besides the natural problems of Doppler US imaging such

Table 2 Mean registration
errors (mm) obtained in animal
model study

Surface points Vascular points Target points after FE analysis using

Surface data Vassels data Combination

FED 1.03 1.91 1.87 2.67 1.55

CPD 1.14 2.07 2.11 2.85 1.83

RPM 1.48 2.65 2.36 3.53 2.11

Bold value indicates the best registration error for the target points using the FED algorithm
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as noise, the insufficient number of vessels around the tumor
region can reduce the useful inputs for the biomechanical
model. In fact, for deeper tumors, the deformation was small,
and for tumors near the surface, the number of adequately
large vessels recoverable in Doppler images was small. Pres-
sure applied on the US probe during data acquisition can
also affect the nature of deformation and therefore create
CSF movement artifacts. In addition, the rapid movement of
the probe can also produce artifacts on the Doppler image.

Also, in the field of registration tasks in the present study,
the FED algorithm showed some limitations, which included
initial conditioning requirements. Proper definition of stiff-
ness matrix and fixed nodes is a critical step that affects the
stability and performance of FED.

One of the questions that the reader of this paper may ask
us is why did we use LEM concept in the FED algorithm
to drift source points toward target points and then again
use the calculated displacement in a FE model to compute
deformation. This seems to be a flaw in the design of the
study. In fact, in the FED algorithm, we assumed that defor-
mation was local, and the algorithm was initialized by fixing
some points around the deformed area, but in the FE analysis,
approximately all of the nodes in the volumewere included in
the computations. In FED, we matched local deformed areas
(surface and vessels), but the final FE analysis combined the
calculated displacements to compute the deformation of the
entire brain.

For surface data acquisition, FED algorithm initialization
and image registration can be performed reasonably fast, pos-
sibly within a couple of minutes. It is obvious that rendering
of 3D Doppler US images and FE analysis were generally
time-consuming tasks, but these can be improved using opti-
mized algorithms. As compared to the conventional method
of performing intraoperative MR imaging during operating
time [27], which is very time-consuming, this method can be
of great interest for neurosurgeons, particularly in terms of
reducing surgery time.

Conclusions

In the present study, we tried to improve the accuracy of brain
shift estimation using a novel approach of combining two
intraoperative imaging modalities, namely, surface scanning
and Doppler US imaging, in a biomechanical model. A new
surface imaging method, projected landmark scanning, and
a new non-rigid registration algorithm, FED, were proposed
in this work. Validation tests on a phantom and animal model
were conducted, and after extensive processing, the results
were evaluated.

The results of the present study proved the accuracy and
the effectiveness of our method. Although each imaging
modality showed somedegree of error reduction in brain shift

estimation, the proposed combination method has shown an
acceptable estimation accuracy approximately 1.55mm.

Another product of the present study is the proposed bio-
mechanically based FED registration algorithm that can be
useful for similar works on elastically deformed objects.

Although one pre-clinical test on animal model is insuf-
ficient to fully validate the findings of the present study, it
appears that the method of hybrid imaging is a promising
technique to generate more accurate results for brain shift
compensation in future neuro-navigation systems.
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