A new IL-13Rα2 gene mutation in an X-linked SCID identified through TRECKREC screening: a case report

M. Nourizadeh 1, S. Borte 1, M. Faziallah 1, L. Hammarström 1, Z. Pourpak 1

1Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran, Islamic Republic of; 2Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; 3Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Municipal Hospital St. Georg, Leipzig, Germany.

Severe combined immunodeficiencies (SCID) represent a rare group of primary immunodeficiency disorders (PIDs), which will be fatal in early childhood due to development of common and opportunistic infections. Owing to a high number of unknown mutations in related genes especially in the exons of IL-13Rα2 gene, new cases are intermittently reported around the world. Here, we found a new mutation of the common gamma chain in an Iranian X-SCID newborn.

The patient was a 6-day-old boy with a family history of PID who was referred to the Immunology, Asthma and Allergy Research Institute (IAARI) for immunological evaluation. The child was screened using a molecular-based analysis that measures the number of copies of T cell receptor excision circles (TRECs) and kappa-deleting recombination excision circles (KREC) using a multiplex quantitative Real Time PCR. To confirm the results, a complete immunological evaluation and IL13Rα2 (interleukin 1 receptor, gamma) gene sequencing were performed (both molecular assessment and gene sequencing were done in Leipzig, Germany).

The results of the multiplex quantitative real time PCR showed undetectable TRECs but a high level of KREC copy numbers. Flow cytometric analysis of lymphocyte subsets also showed low numbers of T and NK cells, but elevated number of B cells. We subsequently found a novel substitution in the IL13Rα2 encoding gene (X-SCID): c.805 C>A, leading to p.268 Ser>Arg. Based on the functional analysis using PolyPhen, the mutation is predicted to be damaging. The patient was thus diagnosed as a T- B+ NK- X-linked SCID.