
 

 

 

 
Abstract— We examined the functional connectivity of 
subcallosal cingulate gyrus (SCG), nucleus accumbens (NAc), 
and ventral caudate (VCa), the main target areas for the 
treatment of major depression disorder (MDD), using deep 
brain stimulation (DBS). MDD is one of the most common 
diseases in the world, and approximately 30% of MDD patients 
do not respond to common therapies, including psychotherapy 
and antidepressant medications. Alternatively, DBS has been 
recently used to treat MDD.  Resting state fMRI was obtained 
from seventeen healthy subjects and seven MDD patients. The 
functional connectivity network of the brain was constructed 
for all subjects and measured by the ‘degree’ value for each 
SCG, NAc, and VCa regions using the graph theory analysis. 
The results show that the degree values of VCa and the left 
SCG are higher in the MDD group than the healthy group. 
Furthermore, the patterns of the degree values were different 
for the right and left hemispheres in MDD patients. Our 
findings suggest that degree values and their patterns have a 
potential to be used as diagnosis tools to detect the brain areas 
with abnormal functional connectivity. 
 
Keywords- Major depression, resting state Functional 
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I. INTRODUCTION 

Major depression disorder (MDD) is one of the most 
common diseases that has affected 4.7% of people 
worldwide [1].Common therapies for MDD are the use of 
psychotherapy as antidepressant medications [2]. However, 
approximately 30% of MDD patients have treatment 
resistant depression (TRD)[3].  
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Recently, with the development of advanced technology, the 
direct deep stimulation of the brain has become viable, and 
consequently deep brain stimulation (DBS) has been 
developed and used to treat TRD [4][5][6][7] . However, the 
effectiveness of DBS in the treatment of TRD is strongly 
dependent on the best effective target areas of TRD, which is 
still undetermined due to the complexity of these 
diseases[3]. To address this issue, DTI and fMRI imaging 
have been used to select the target area for DBS[8] [9][10] .  
In earlier studies, based on PET-scan images, areas such as 
subcallosal cingulate gyrus (SCG) and nucleus accumbens 
(NAc) have been introduced and used as a DBS target area 
for the treatment of TRD, but about 40% of patients did not 
respond to the stimulation of these areas[11][6][12][4]. Later 
studies have focused on functional and structural networks, 
and the interactions of the nodes of these networks to 
determine the appropriate DBS target area and set the DBS 
stimulation parameters. Recent investigations have 
suggested that graph based network analysis is a strong 
method that allows us to determine the organization of brain 
connectivity and characterize topological properties of brain 
networks by mapping the brain as functional or structural 
networks consisting of nodes (brain regions) and edges 
(functional or structural connectivity between 
regions)[13][14]. In this study, for the first time, we 
investigated resting-state functional connectivity for the  
selected areas in both health subjects and MDD patients 
using graph theory analysis. These areas include SCG, NAc, 
and Ventral caudate (VCa), which are the most commonly 
used DBS target areas for TRD treatment. 

II. MATERIAL AND METHOD 

A. Subjects  
Twenty-four subjects were selected, including 7 MDD 
patients (mean age41± 7.1 years,2male) and 17 healthy 
controls (mean age39±8.2,10male). The diagnosis of MDD 
was made according to the Hamilton Depression Rating 
Scale (HAMD) (mean 31± 6.3) by an experienced 
psychiatrist. 

B. Image Acquisition 

All subjects were scanned with a Siemens magnetom Prisma 
MRI at 3T system.  Resting state functional imaging (echo-
planar imaging sequence) parameters were as follows: 240 
volumes, 32 slices with 3.5 mm thickness, TR = 2000 ms, 
TE = 30 ms, flip angle = 90°, voxel size: 3.1×3.1×3.5 mm, 
field of view =200×200 mm and an acquisition matrix of 64 
× 64.  
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T1 weighted images were also acquired for co-registration of 
functional images. During the whole scanning process, the 
subjects were asked to keep their eyes open. 
 
The analyses included preprocessing, functional 
connectivity, thresholding for binary matrix, and graph 
theory and statistical analyses, shown in Fig.1.  
 

C. Data Analysis 
 
• Preprocessing  

The most important step in the resting state fMRI analysis is 
the pre-processing stage. The resting state fMRI data 
includes a weak signal with a complex noise structure. To 
increase the signal to noise ratio and reduce the noise of 
psychological and instrumental sources, we used DPABI 
toolboxes in MATLAB R2016a (MathWorks Inc., Natick, 
MA,United States)[15]. Thus, a series of standard pre-
processing was performed on data fMRI, including (i) the 
first ten volumes of each functional time course was 
removed to allow for T1 equilibrium and the participants to 
adapt. (ii) The remaining volumes were corrected for the 
intra-volume acquisition time delay using slice-timing, and 
were realigned to the first volume using the six-parameter 
(rigid body) spatial transformation. (iii) The high-resolution 
T1 weighted image was reoriented to the mean functional 
image. (iv) Skull stripping was performed for better 
registration and registration T1 image to functional space.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(vi) The T1 images were segmented into grey matter (GM), 
white matter (WM), and cerebrospinal fluid (CSF).  (vii) 
WM, CSF, and global signals were regressed on the fMRI 
data. (viii) the images were spatially normalized to the 
standard Montreal Neurological Institute (MNI) space. 
Spatial smoothing was performed using a 4-mm full-width at 
half-maximum (FWHM) Gaussian kernel. (ix) Finally, a 
temporal band-pass filter (0.01 < f < 0.1 Hz) was applied to 
reduce the influence of low-frequency drift and high 
frequency respiratory and cardiac noise. 
 
The graph theory analysis was used to construct a functional 
brain network [16], utilizing BRAPH toolboxes in 
MATLAB R2016a (MathWork Inc., Natick, MA,United 
States). 
 
• Functional connectivity 

 Functional connectivity was performed as follows: The seed 
regions were obtained from the Brainnetome atlas 
(BN_atlas) which divided the whole brain into 246 regions 
[17]. The time course (series) of the seed regions were 
extracted, and Pearson correlation was used to calculate 
functional connectivity between the extracted time course of 
the whole brain regions. 
 
• Thresholding 

In the previous step, the weighted connectivity matrix 
(matrix size 246×246) was measured for each subject and 
negative correlation values were discarded. The density 
thresholding method was used to construct a binary 
connectivity matrix.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure1. A schematic data analysis overview 
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This approach includes the choice of the strongest D% of 
connections in each individual network, placing all 
remaining connections to 1 and other connections to 0 [18]. 
Here, there is a network density of 0-100%; the strongest 
correlation was preserved with a 1% edge increase for each 
threshold step. 
 
• Graph theory analysis 

The graph consists of a series of nodes that are connected by 
edges. For the graph analysis, the graph was first constructed 
from the binary connectivity matrix (nodes: brain regions 
and edges: correlation value between brain regions), then the 
‘degree’ for each node was calculated based on the 
following formula. The degree of each node equals the total 
number of edges that are connected to a node. 
 

∑∈
=

Nj iji aDegree)(  

N: number of all nodes 
aij: connection value between node i,j that  aij=1 when a 
connection between (i,j ) exists  and equals 0 otherwise . 
 
D. Statistical analysis 
The non-parametric permutation test was used to evaluate 
the significance of differences between healthy and MDD 
patient groups [19]. The permutation test evaluates whether 
the null hypothesis (the null hypothesis is the statement that 
an observed effect is due to randomness) can be rejected by 
calculating the associated p-value and comparing it to a 
predetermined threshold (p = 0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

III. RESULT 

The degree value was calculated in the range of density (0-
100) for three regions including SCG, VCa, and NAc in 
healthy and MDD patient groups. The trends of the group 
average results for the degree values as a function of density 
networks for healthy and MDD subjects are shown in Fig.2.  
 
The results showed three major differences: 

1- The degree value of SCG was higher in the healthy 
groups than the MDD groups within the density range 
of 0-25, but was lower for densities of 25 degrees or 
higher.  

2- The patterns and values of degrees were slightly 
different for SCG and VCa within the density range of 
0-45% between the two groups; they increased linearly 
as a function of density and were slightly higher in the 
MDD group as compared to the healthy control group. 

3- The degree values were saturated for the density of 45% 
for all three areas in both groups, and were higher in the 
MDD group than the control group for the SCG and 
VCa areas.  

Figure 3 shows the non-parametric permutation test results 
for all three regions SCG, VCa, NAc. Dark-blue points show 
the difference in degree values between the healthy 
and MDD groups (HC-MDD), and within the purple zone 
lies the confidence intervals. The actual   difference value 
(dark blue color points) is significant if it falls outside the 
confidence intervals (purple zone).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The group average results of the ‘degree’ value of the left and right SCG (green color) ,VCa (red color) 
and NAc (blue color) as a function of network density for the healthy (top) groups and the MDD (bottom) groups 

. 
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The results showed: 
 
 
 
 
 
 

Figure 3. The significance of the differences between healthy and MDD patient groups for three regions 
SCG,VCa,NAc . From top to bottom, respectively. The dark blue points represent the actual difference 
between the degree of healthy and MDD group. the actual   difference value (blue color points) is 
significant if falls outside the confidence intervals (purple zone). 

Figure 4. From top to bottom, three different patterns of the ‘degree’ values as a function of network density in 
MDD subjects are shown. SCG (green color), VCa (red color) and NAc (blue color). 

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2600 submitted to 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). Received February 21, 2019.



 

 

 

Fig. 3 presents two major important points: 
1- The degree values were significantly higher in MDD 

subjects than in healthy subjects over a range of 5-30% 
intensity for VCa and for a density of 45 or higher for 
the left SCG.  

2- There was no significant difference in the degree value 
between the two groups in the areas of the right SCG 
and the left and right NAc. 

Fig.4 shows the patterns of the degree values vs. network 
density for three MDD patients. The values and patterns of 
the degree vs. network density were different in the two 
hemispheres in each patient and in SCG, VCa, and Nac areas 
Thus, unlike healthy subjects, MDD patients presented a 
high intersubject variability in both the value and pattern of 
degree.  

IV. DISCUSSION 

The aim of this study was to examine the functional 
connectivity of the three SCG, VCa, and NAc regions, 
which are popular DBS target regions for the treatment of 
MDD patients. Determining the best DBS target for each 
MDD patient is the major challenge for DBS treatment. 
Investigating the structural and functional connectivities of 
the brain can help determine the most appropriate DBS to 
address this clinical challenge.  
Our results showed that the degree values were higher in the 
VCa and left SCG regions in MDD patients than in healthy 
subjects. In the theory graph, the higher degree of each 
region indicates the higher local processing ability, more 
interaction with other areas within the brain and greater 
functional connectivity. Thus, our findings may imply that 
the VCa and left SCG regions can be considered as 
appropriate DBS targets.  
Our findings also indicated that the patterns of the functional 
connectivities were different in the left and 
right hemispheres in MDD patients. Also, the patterns of the 
degree values for SCG, VCa and NAc regions were different 
among MDD subjects. These findings demonstrate the high 
intersubject variability in functional connectivities of the 
brain. The clinical implication is that the appropriate DBS 
target is different for each MDD patient and must be 
individualized for each case. 
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