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Abstract Epigenotoxicology is an emerging field of study
that investigates the non-genotoxic epigenetic effects of
environmental toxicants resulting in alteration of normal
gene expression and disruption of cell function. Recent
findings on the role of toxicant-induced epigenetic modi-
fications in the development of degenerative diseases have
opened up a promising research direction to explore epige-
netic therapy approaches and related prognostic biomark-
ers. In this review, we presented comprehensive data on
epigenetic alterations identified in various diseases, includ-
ing cancer, autoimmune disorders, pulmonary conditions as
well as cardiovascular, gastrointestinal and bone disease.
Although data on abnormalities of DNA methylation and
their role in the development of diseases are abundant, less
is known about the impact of histone modifications and
microRNA expressions. Further, we discussed the effects
of selected common environmental toxicants on epigenetic
modifications and their association with particular abnor-
malities. A number of different environmental toxicants
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have been identified for their role in aberrant DNA meth-
ylation, histone modifications, and microRNA expression.
Such epigenetic effects were shown to be tissue-type spe-
cific and highly associated with the level and duration of
exposure. Finally, we described present and future thera-
peutic strategies, including medicines and dietary com-
pounds for combating the toxicant-induced epigenetic
alterations. There are currently seven histone deacety-
lase inhibitors and two DNA methyltransferase inhibitors
approved for clinical use and many other promising can-
didates are in preclinical and clinical testing. Dietary com-
pounds are thought to be the effective and safe strategies for
treating and prevention of epigenetic pathophysiological
conditions. Still more concentrated epigenetic researches
are required for evaluation of chemical toxicity and identi-
fying the causal association between key epigenetic altera-
tion and disease.

Keywords Epigentic changes - Environmental exposures -
Epigenetic machinery - Histone modification - Therapy -
Nutrition

Introduction

Evaluating and monitoring the potentially hazardous
effects of environmental toxicants on human health are
important issues of the present industrial era. Ubiquitous
exposure to the vast number of known and unknown syn-
thetic toxicants has become an inevitable part of the mod-
ern life that could be responsible for the imbalance of nor-
mal physiological status and the cause of serious diseases
and abnormalities in individuals (Hodjat et al. 2016; Khan
et al. 2016; Koopaei and Abdollahi 2017; Niaz et al. 2017).
Therapeutic approaches to intervene the toxicant-induced
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disorders basically rely on understanding the mechanism of
toxic action at molecular and cellular level. It is known that
environmental toxicants could exert their disrupting effects
through genotoxic and non-genotoxic mechanisms. Epi-
genetic modifications as the non-genotoxic mechanism of
toxicant-induced health effects have recently opened a new
window of research in toxicological studies.

In general, epigenetic is defined as any stable and herit-
able changes in the chromatin structure that can result in
alteration of gene expression and appearance of the abnor-
mal phenotype. Changes in genomic structure are mediated
through enzymatic chemical modifications on DNA struc-
tural bases and histone proteins that consequently influence
the gene accessibility and alter DNA transcription (Los-
calzo and Handy 2014). Another mode of epigenetic gene
regulating is mediated by non-coding RNA, the functional
DNA transcripts that are not translated into protein and
have a role in gene suppression or activation at transcrip-
tional and post-translational levels.

Studies have shown that epigenetic changes play a criti-
cal causative role in the etiology of many diseases including
autoimmune disorders, pulmonary conditions, and cardio-
vascular diseases as well as different cancer types. So far,
many researches have been conducted to reveal the mecha-
nisms of epigenetic changes involved in the malregulation
of genome expression and induction of diseases (Jeong et al.
2014). Environmental agents are extrinsic factors that mod-
ulate the aberrant changes of epigenetic pathways. Tobacco
smoke, metal ions, bisphenol A, benzene, alcohol and many
other toxicants along with their genotoxic potential are
shown to be the inducer of epigenetic alterations.

Although our knowledge on the functional mechanisms
of environmental epigenomic modulators is still not ade-
quate, fascinating investigations have emerged to find the
factors that could reverse the abnormal epigenetic changes;
therefore alleviate or remove the abnormal phenotypes.
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These factors could be grouped into therapeutic and die-
tary chemopreventive agents. In this review, we presented
comprehensive data on human degenerative diseases recog-
nized to have epigenetic links and attempted to collect the
mechanistic data on the studied epigenetic events related
to such abnormalities. There is a growing list of literature
linking the abnormal epigenetic pattern to the exposure to
environmental factors. Therefore, we focused on selected
environmental toxicants with different epigenetic effects to
show the wide range of epigenetic mechanisms that could
be affected by toxic substances. We further discussed cur-
rent therapeutic approaches and drugs available to adverse
abnormal epigenetic changes. Also, we reviewed the cur-
rent information on some dietary chemopreventive agents
that able to affect epigenetic mechanisms.

Mechanisms of epigenetics: an overview

Epigenetic regulation of gene expression is a complex pro-
cess in which different mechanisms interact individually
or synergistically to affect gene expression. The epigenetic
factors could change chromatin structure in the way that
inhibits or induces transcription machinery functions with-
out changing the DNA sequence (Fig. 1).

DNA methylation

Methylation of DNA has been among the frequently stud-
ied epigenetic modifications. This reversible chemical pro-
cess involved the covalent addition of a methyl group to
the cytosine C5 carbon side-chain leading to the formation
of 5-methylcytosine (5-mC). In somatic cells, the 5-mC
are mostly occuring at cytosine nucleotide followed by
guanosine, where creating CpG dinucleotides. The applied
methyl groups change the structure of DNA major groove
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and inhibit the DNA transcription, and therefore impair
gene function (Weinhold 2006).

Family members of DNA methyltransferase (DNMTs)
including DNMT1, DNMT2, DNMT3L, DNMT3a and
DNMT?3Db are responsible for the transfer of methyl group
to DNA cytosine (Sun et al. 2015). Based on their function,
they are categorized into two groups: maintenance and De
novo enzymes. De novo DNMTs place the methyl group on
unmethylated CpG sites whereas the maintenance DNMTs
add methyl group to the hemimethylated CpG (Feng et al.
2010).

Histone modifications

Histone modifications have an important role in chroma-
tin remodeling and gene regulations. Based on the type of
modifications, nucleosomal histones are covalently marked
by different chemical groups at specific amino acids of their
tail region. The most studied histone modifications include
methylation, phosphorylation, acetylation, ubiquitylation,
and sumoylation (Loscalzo and Handy 2014). In addition to
covalent epigenetic modifications, histone clipping are found
to be involved in the N-terminal cleavage of histones tail and
alteration of gene expression (Santos-Rosa et al. 2009).

Histone methylation

The reaction is mediated by methyltransferase enzyme
involved in adding the methyl group to the amino groups of
specific lysine and arginine residues (Weinhold 2006). As
opposed to the methyltransferase activity, demethylase cata-
lyzes the removal of methyl groups and therefore reverses
the epigenetic influence on specific gene expression. The
lysine residues are able to be mono-, di-, or tri-methylated.
Depending on the type of methylated histone and targeted
lysine residue and also the degree of methylation, histone
methylation is associated with silencing and activating of
gene expression. It was shown that trimethylation of lysine
4 on histone H3 of genome promoter (H3K4me3) is mostly
associated with active expression, while trimethylation of the
same histone on lysine 9 and 27 (H3K27me3, H3K9me3) is
contributed to gene suppression (Chen et al. 2015a).

Histone acetylation

One of the major histone modifications in eukaryotic cells
for regulation of gene expression is acetylation that cata-
lyzed by histone acetyltransferases (HATS) such as sirtuin
family. While histone acetylation has shown to be associ-
ated with active gene expression there are histone deacety-
lase enzymes (HDACS) that function to remove the acetyl
group and therefore involved in gene suppression (Lau
et al. 2000; Herberg et al. 2015).

Histone ubiquitination

Histone ubiquitination and its role in cellular function have
been the focus of research interest for last decades. Ubiqui-
tin ligases are actively involved in adding ubiquitin units to
the NH3+ group of lysine residues; resulted in the forma-
tion of mono and polyubiquitinated histones. The role for
ubiquitination of specific histone residues and the related
pathways are emerging. Accordingly, it was shown that
H2B monoubiquitination is an important histone modifi-
cation implemented in gene transcriptional regulation and
remodeling of chromatin organization (Turco et al. 2015).

Histone phosphorylation

Phosphorylation and dephosphorylation of histones are the
dynamic modification process mediated by kinases and
phosphatases, respectively. Threonines, serines, and tyros-
ines represent the predominant targets for phosphatases
activity (Nowak et al. 2003). Phosphorylation of histones
has divergent effect on gene expression and are affected
highly by cross-talk with other epigenetic modifications
(Rossetto et al. 2012).

Non-coding RNA

Non-coding RNAs (ncRNAs) are the group of functional
RNA molecules which are not translated to protein. They
are categorized into two subgroups based on their size:
the short ncRNAs (<30 nucleotides) and the long ncRNAs
(>200 nucleotides). ncRNAs play role in histone modifica-
tions, chromatin formation, targeting DNA methylation and
gene silencing. Their regulatory role in gene expression is
related to both transcriptional and post-transcriptional level.
MicroRNAs (miRNAs) exert their effect through binding to
the messenger RNAs directly which results in the cleavage,
degradation or block translation. Similarly, short interfer-
ing RNAs (siRNA) act as a mediator in post-transcriptional
gene silencing (PTGS) (Esteller 2011). Studies also dem-
onstrated that siRNAs are the potent inducer of heterochro-
matin formation. Piwi-interacting RNAs (piRNA) are the
largest family of short ncRNAs acting as the suppressor
of gene expression and suppress the activity of transposon
in cells (Weinberg and Wood 2009). LncRNAs are able to
make complex with chromatin-modifying proteins which
result in chromatin remodeling (Kung et al. 2013).

Diseases implicated in epigenetics
Disruption in epigenetic regulatory pathways can cause

incorrect gene expression leading to the development of
epigenetic diseases (Lu et al. 2015). The aberrant DNA

@ Springer



Arch Toxicol

methylation and histone covalent modifications, as well
as alteration in the expression of ncRNA, have been well
evidenced in a wide range of pathophysiological condi-
tions including autoimmune diseases, cancer, cardiovas-
cular disorders, and many other degenerative abnormali-
ties (Hirst and Marra 2009; Paul and Tollefsbol 2014).
Recent epigenetic findings have extended our under-
standing of the causal mechanism of autoimmune dis-
eases and provided clues that link environmental factors
with the etiology of related disorders. In fact, changes
in DNA methylation of particular genes have been fre-
quently reported in systemic lupus erythematous (SLE),
rheumatoid arthritis and multiple sclerosis (MS) (Javierre
et al. 2008; Koch et al. 2013; Zouali 2014; Zufferey
et al. 2014; Long et al. 2016). Balade et al. showed a
significant lower DNA deoxymethylcytosine content of
CD4+ T cell in SLE patients compared to the control
group (Balada et al. 2008). Although their experiments
addressed no significant changes in mRNA expression of
the DNMTs, some studies showed that DNMT1 expres-
sion is down-regulated in peripheral blood mononuclear
cell of MS patients as well as lymphocytes of SLE that
might be associated with aberrant methylation of their
gene promoters (Lei et al. 2009; Calabrese et al. 2014).
Therefore, changes in DNA methylation could be attrib-
uted to the changes in DNMT expression. Histone modi-
fication is another epigenetic regulatory factor that its
role has started to become clear in immune disorders.
Besides the chemical modifications, the aberrant expres-
sion of microRNAs has been implicated in MS and other
autoimmune diseases through their modulation of pro-
tein expression and function of inflammatory pathways
(Table 1) (Stanczyk et al. 2008; Zhou et al. 2008).
Various studies have proved the role of epigenetics in
the pathogenesis of chronic obstructive pulmonary dis-
ease (COPD), asthma and other pulmonary disorders.
COPD is a progressive lung disease that can lead to severe
airways obstruction and emphysema. Abnormal DNA
methylation and decrease in histone deacetylase activity
have been frequently reported in COPD patients and were
associated with both severity and maintenance of diseases
(Kabesch and Adcock 2012; Zong et al. 2015). While
HDACs play a key role in the suppression of inflam-
matory genes expression, their activity was reduced in
alveolar macrophages of COPD patients resulted in the
amplification of inflammatory response. Such mecha-
nism has also been reported in severe asthma conditions.
Furthermore, it was shown that histone methylation and
acetylation of particular genes such as the Notchl gene
promoter of lung CD+4 T cell increased significantly
in asthma and COPD cases accounting for the aberrant
changes in the expression of histone acetyltransferase
P300, PCAF genes and subsequent downstream protein
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activation including HDACs (Kabesch and Adcock 2012;
Cui et al. 2013).

Aberrant epigenetic alteration is an emerging cause of
cardiovascular disorders and cardiovascular risk factors
such as hypertension. Accordingly, increase in DNA meth-
ylation of ALU in leucocyte was shown to be associated
with the prevalence of different cardiovascular diseases
(Kim et al. 2010). Many studies also identified the altered
methylation of promoter sites of key pathogenesis-related
genes such as Monocarboxylate transporters and Hydrox-
ysteroid 11-Beta Dehydrogenase 2 (Zhu et al. 2005; Friso
et al. 2008). However, the detailed underlying epigenetic
mechanism that involves in the etiology of the cardiovascu-
lar disorder is unknown.

Recently, the crucial role of miRNAs in the biology of
cardiogenesis and development of numerous cardiovascular
diseases has been demonstrated (Udali et al. 2013). There
are also strong evidence that particular microRNAs could
apply as biomarkers for diagnosis and prognosis of heart
failure and acute myocardial infarction (AMI) (Nishiguchi
et al. 2015).

Changes in DNA methylation patterns and histone
marks have also been evidenced in many neurological
diseases (Table 1). Hypermethylation of glucocorticoid
receptor (NR3C1) and brain-derived neurotrophic fac-
tor (BDNF) promoters in major depression disorders, volt-
age-gated potassium channels (KCNQ3) promoter in bipo-
lar and extracellular matrix glycoprotein reelin (RELN)
promoter in epilepsy are the examples of detected neuro-
logical abnormal DNA marks (Onishchenko et al. 2008;
Guidotti and Grayson 2011; D’ Addario et al. 2012; Kamin-
sky 2014). There are also many studies on histone modi-
fications and their influence on the expression of genes
involved in the development of neurological disorders
(Mastroeni et al. 2015; Ganai et al. 2016).

Epigenetic modifications are likely to be detected in
many other disorders related to the gastrointestinal system
(Ventham et al. 2013; Kelly and Alenghat 2016), skin (Shi
et al. 2013; O’Rielly and Rahman 2015) and bone (Taka-
hashi et al. 2015; Baud’huin et al. 2017).

In addition to all above, the emerging role of epigenetics
in cancer initiation and progression has currently become
the focus of many research studies. The cancer epigenome
is characterized by global changes in DNA methylation and
histone modification patterns as well as profound changes in
non-coding RNA expression (Sharma et al. 2010). Changes in
global DNA methylation and site-specific hypo/hypermethyl-
ation of particular genes have been well recognized in differ-
ent types of cancers (Sharma et al. 2010). Loss of DNA meth-
ylation of oncogenes such as MAPSIN, R-Ras, S-100 results
in their activation that plays crucial role in the cancer devel-
opment (Wilson et al. 2007; Sharma et al. 2010). Also, epi-
genetic studies on different neoplastic disorders have shown
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that hypomethylation of retrotransposons, the key regulator
of gene expression occur in the early stage of tumorigenesis
involved in chromosome instability. In contrast to genome
hypomethylation, the essential role of hypermethylation and
silencing of the promoter region of tumor suppressor genes,
transcription factors, and DNA repair genes has been well
recognized in carcinogenesis (Sharma et al. 2010).

Changes in histone epigenetic marks have been impli-
cated in varied forms of cancer. Changes in H3K27m3 and
H3K9me3 pattern are associated with aberrant gene sup-
pressions. The underlying mechanisms of histone epigenetic
modifications were attributed to the changes in the expres-
sion of epigenetic enzymes such as HATs, HMTs, HDACs
and histone demethylase (HDMs). Importantly, overexpres-
sion of EZH2, H3K27 methyltransferase was identified in
breast and prostate cancer that were associated with poor
prognosis (Sharma et al. 2010). The levels of HDACs were
shown to be changed significantly in various types of can-
cers including hematological malignancies. MicRNAs are
another key player that their dysregulation involves in the
progression of carcinogenesis. They have a potential dual
function as oncogenes and oncosuppressor gene. While the
expression of oncogenic miRNA increased in cancerous
lesion, the level of tumor suppressor miRNA was shown to
reduce (Iorio and Croce 2012).

Environmental toxicants induce epigenetic toxicity

There is a close association between environmental toxi-
cants and epigenetic alterations. A variety of epidemio-
logical and experimental studies on animal, human and
in vitro models have shown the influence of environmental
toxicants on epigenetic regulations and their implementa-
tion on development, health and disease risk (Mensor et al.
2001). Although the toxicant-induced epigenetic alterations
are minor, they could possibly be accumulated to the toxic
level and exert irreversible effects on human health or even
next generations. Up until now, a variety of environmen-
tal toxicants have been identified for their role in aberrant
epigenetic modifications such as DNA methylation, his-
tone modifications, and microRNA expression. Still, there
are a large number of chemicals remain to be examined for
their epigenetic toxicity (Littell et al. 2002). As the scope
of these topics has expanded vastly, here we have focused
on selected number of toxicants with known epigenomic
effects and their association with diseases (Table 2).

Metals
Heavy metals are the most widespread contamination in the

ecosystems. Different heavy metals such as Cadmium (Cd),
Mercury (Hg), Arsenic (As), Chromium have been well

recognized for their role in epigenetic modulations (Perez
et al. 1990; Kandil et al. 1994). There are various avail-
able studies which reveal the linkage between environmen-
tal metals and DNA methylation. The underlying mecha-
nisms of their epigenetic malregulations is mostly related
to increase oxidative stress via the generation of reactive
oxygen species (ROS) and induction of DNA damage that
further inhibits the capacity of methyltranferases to interact
with the DNA and hence causing an overall modified meth-
ylation of the cytosine at CpG sites (Wang et al. 2012; Tong
et al. 2013).

Cadmium

Cadmium is a well-known carcinogenic metal with low
mutagenic potency. Different possible mechanisms have
been identified regarding carcinogenesis of the cadmium.
Among them, the generation of ROS and aberrant altera-
tion of DNA methylation pattern play a major biological
role (Onishchenko et al. 2008). Recent studies have shown
that based on the doses and duration of exposure, cadmium
could induce hypomethylation or hypermethylation through
modulating methyltransferase activity. Exposure to high
dose or acute low dose of cadmium inhibits DNMT activity
and therefore decreases DNA methylation states of particu-
lar genes, while prolonged, low doses induce DNMT activ-
ity and increase DNA methylation of gene associated with
cell transformation (Benbrahim-Tallaa et al. 2007). Accord-
ingly, it was shown that low dose of Cd induces hypermeth-
ylation of caspase-8 CGI in mice liver after 48-week expo-
sure (Wang et al. 2012).

Arsenic

Arsenic is a well-known established carcinogen that can be
found in two forms of organic and inorganic in the environ-
ment. Binding of arsenic to elements such as oxygen, sul-
fur or chlorine forms inorganic arsenic while combining to
carbon elements forms organic arsenic. When absorbed to
the body, the arsenic with inorganic nature is readily meth-
ylated for detoxification with the help of enzymes using
S-adenosyl methionine (SAM) in the reaction. The fact that
DNA methyltranferases also need SAM as a donor of the
methyl group suggested a role for the DNA methylation in
the carcinogenicity of arsenic (Okoji et al. 2002). It is also
noted that SAM depletion as a result of arsenic metabolism
could affect the activity of other methyltransferases such
as histone methyltransferase. Moreover, various studies
have shown that arsenic toxicity is associated with genomic
hypermethylation as well as global hypo and hypermeth-
ylation. There are also sparse studies on modulation of his-
tone acetylation, phosphorylation and miRNA expression
after arsenic exposure (Okoji et al. 2002; Ren et al. 2011).

@ Springer
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Table 2 Environmentally induced epigenetic toxicity in rodent models

Effects

Epigenetic change

References

Environmental Species Exposure Stage
exposure
Bisphenol A Mouse Maternal In utero
Formaldehyde Rat Adulthood Adulthood
Cadmium Rat, mouse Adolescence Later adulthood
Nickel Rat, mouse Early adult-  Later adulthood
hood
Methyl mercury Mouse Neonatal Adulthood
Dibutylphthalate Rat In utero In utero to
(DBP) adulthood
2,3,7,8-Tetrachloro- Mouse In utero In utero to
dibenzop-dioxin adulthood
(TCDD)
Urethane Mouse Late child- Adulthood
hood
Vinyl carbamate Mouse Adolescence  Adulthood
Alcohol Rat In utero In utero
Caffeine Mouse In utero Early adulthood
Arsenic Mouse In utero In utero

Reproductive, neuro-
logical and metabolic

Behavioral abnormali-
ties

Hepatic abnormalities

Tumors

Behavioral abnormali-
ties

Decreased testicular
testosterone

Mammary and hepatic
abnormalities

Hepatic tumors

Pulmonary carcino-
genesis

Neurological behavior

Early adulthood car-
diac abnormalities

Reproductive, neuro-
logical,
behavioral, metabolic

J DNA methylation of
Igf2r and Peg3 genes

J DNA methylation of
reelin gene

1 Caspase-8 CGI DNA
methylation

1 miR-222 (fexpres-
sion of CDKNI1B and
CDKN1C), { miR-203,
4 miR-152

1 Histone demethylation

J Histone H4 acetylation

1 Histone ubiquitination

1 H3 methylation

J H3 acetylation (pro-
moter I[V)

Histone modifications

1 CpG methylation of
the BRCA-1 promoter

4 H3 di, trimethylation
(H3K27me3)

J miR-138

Altered miRNAs expres-
sion

Altered miRNAs expres-
sion

Altered DNA meth-
ylation patterns in
Al1AR +/+

DNA Hypomethylation
and hypermethylation
Altered miRNAs expres-

sion
Histone modification

Chao et al. (2012)
Levenson et al. (2006)
Wang et al. (2012)

Chen et al. (2006),
Zhang et al. (2013)

Onishchenko et al.
(2008)

Schubert (2014)

Papoutsis et al. (2015)

Pandey et al. (2014)

Kassie et al. (2010)
Ignacio et al. (2014)

Buscariollo et al.
(2014)

Okoji et al. (2002),
Ren et al. (2011)

BRCA-1 breast cancer, Peg3 paternally expressed gene 3, Igf2r insulin-like growth factor 2

Nickel

The mechanism of nickel-induced carcinogenicity and
cardiotoxicity is still not clear. It has been suggested that
nickel causes the replacement of magnesium in DNA
interactions, stabilizing the condensation of chroma-
tin and initiates de novo DNA methylation (Baccarelli
and Bollati 2009). It is evident from various studies that
nickel could also alter gene expression through histone
modifications (Ke et al. 2006). Upon in vitro exposure
to soluble NiCl,, a marked reduction in the global H4
acetylation as well as increase in H3 methylation were
detected (Chen et al. 2006). Furthermore, exposure to
nickel ion increased H3 methylation of particular gene

@ Springer

including gpt transgene involved in induction of gene
expression (Chen et al. 2006). Changes in different miR-
NAs have also been implicated in nickel-induced tumori-
genicity (Zhang et al. 2013; He et al. 2014).

Chromium

There are a variety of genetic mutations in the lung can-
cer that were associated with chromium exposure; however,
not much is known about the exact mechanism of chro-
mium-induced epigenetic changes. It has been investigated
that chromate exposure accelerates pl6 hypermethylation,
leading to p16 silencing in tissues obtained from the lungs
affected with cancer (Kondo et al. 2006). Chromium also
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reduces the in vitro H3 phosphorylation and methylation
along with the H3 and H4 acetylation (Schnekenburger
et al. 2007). Study on 20 lung carcinomas and 13 squamous
lung carcinomas showed a significant decrease in miR-
143/145 expression of nearly 80% of the patients (He et al.
2013).

Methyl mercury

Methyl mercury is a toxic environmental pollutant with
neurotoxic effect that is present in high amount in the
sea foods. In vivo studies on mice model have con-
firmed that prenatal exposure to methyl mercury causes
serious learning and motivational changes in offspring.
Accordingly, chronically prenatal exposure to methyl
mercury induced three types of epigenetic alterations
including DNA hypermethylation, decreased H3 acety-
lation of brain-derived neurotrophic factor promoter
and increased histone H3 methylation (Ceccatelli et al.
2013). Also, it was shown that developmental exposure
to low level of the methyl mercury initiates epigenetic
alterations in the hippocampus region (Onishchenko
et al. 2008).

Trichloroethylene (TCE), dichloroacetic acid (DCA),
and trichloroacetic acid (TCA)

TCE and its metabolites are the environmental toxicants
which induce peroxisome proliferation and are carcinogenic
in nature. In vivo studies on mice models have shown that
these toxicants reduce methylation of the promoter regions
of the proto-oncogenes c-jun and c-myec. It was further evi-
dent that TCE-induced hypomethylation of proto-oncogenes
was mostly related to the depletion of SAM, the methyl
donor for DNMTs (Baccarelli and Bollati 2009). In fact,
studies on the effect of TCE metabolites on other epigenetic
markers are very limited.

Air pollution

Air pollution, especially the particulate matter (PM), is a
well-established risk factor for various types of diseases
such as cardiovascular disorders and lung cancer (Brook
et al. 2004). A recent study on steel plant workers blood
samples showed decreased global DNA methylation in
LINE-1 and Alu (Tarantini et al. 2009). In a similar study, it
was confirmed that PM exposure is closely associated with
the diminished DNA methylation of inducible nitric oxide
synthase gene (iNOS), involved in ROS production (Taran-
tini et al. 2009). Moreover, decrease in H3K4 dimethyla-
tion, H3K9 acetylation and mRNA?22 expression was also
reported in the leukocyte of steel worker exposed to metal-
rich air PM (Hou et al. 2011).

Benzene

Benzene as the widely used chemical in industrial prod-
ucts has been associated with different hematological
malignancies and endocrine disruptions (Bahadar et al.
2015). There are a number of studies on epigenotoxicity
of benzene that are mostly focused on DNA methylation
and therefore less is known about other epigenetic effects
of this chemical on human health. It was shown that low-
level exposure to benzene induces global hypomethylation
in the peripheral blood of gas station workers and traffic
wardens and as the risk factor of acute myelogenous leu-
kemia. Similarly, exposure to the higher level of airborne
benzene was related to hypermethylation of p15 and poly
(ADP-ribose) polymerases-1 (PARP-1), also hypometh-
ylation of melanoma antigen-1 (MAGE-1) gene promoter
(Hou et al. 2011).

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)

RDX is among the common environmental pollutants pro-
duced as a result of military and civilian activities. Expo-
sure to RDX was associated with neurotoxicity and malig-
nancies (Jenkins et al. 2006). A recent study on a mouce
model has revealed the aberrant expression of different
miRNAs after long-term exposure to RDX (Zhang and Pan
2009). Based on the tissue type, a significant increase in the
expression of oncogenic miRNAs and decreased in tumor-
suppressing miRNAs were reported (Zhang and Pan 2009).

Epigenetic drugs and their applications

As discussed before, environmental toxicants can induce
epigenetic changes result in a variety of diseases. Finding
the causal associations between epigenetic modifications
and particular diseases has offered the new therapeutic
targets. Indeed epigenetic therapy has recently emerged
as an important pharmaceutical approach (Fig. 2). So far,
different epigenetic inhibitors as well as microRNA-based
modulators have been introduced that can reduce or abol-
ish epigenetic enzyme activity in vitro. While many are at
pre-clinical or clinical phase, there are few epigenetic drugs
that have approved clinical use.

DNA methylation inhibitors (DNMTi)

Several nucleoside-like drugs that function as methyla-
tion inhibitors and potential tumor suppressors have been
approved to use in the clinic. Azacitidine is the analog of
cytidine that become incorporated into DNA during replica-
tion process and could exert its antineoplastic effect through
inhibition of DNA methylation (Kaminskas et al. 2005).

@ Springer
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Fig. 2 Epigenetic alterations
induced by environmental fac-
tors and its reversal approaches.
HMTi histone methyltransferase
inhibitor, HDACi histone dem-
ethylase inhibitor, HATi

histone acetyltransferase, BETi
bromodomain and extraterminal

domain 1.nh1l?1t(>'rs3 DNMTi ]?NA Environmental
methylation inhibitors, LSDi Toxi
lysine-specific demethylase oxicants

A

inhibitor, TCE trichloroethyl-
ene, TCA trichloroacetic acid,
DCA dichloroacetate, RDX
hexahydro-1, 3, 5-trinitro-1, 3,
5-triazine

When azacitidine is recognized by DNMT1, an irreversible
DNMT 1-azacitidine conjugation is formed leading to break-
down of responsible enzyme and reduction of methylation
process (Santi et al. 1984; Momparler 2005). Though azac-
itidine was approved for myelodysplastic syndrome (MDS)
treatment, still possible improvements are needed to increase
its stability and reduce toxic side effects. Decitabine, 5-aza-
2'-deoxycytidine, is another FDA-approved hypomethyl-
ating agent with almost similar therapeutic effect on MDS
patients.

Zebularine, a cytidine analog has demonstrated the simi-
lar mechanism of assimilating into DNA and creating a
covalent bond with DNMTT. The clinical trial is underway,
as this isoform showed remarkable results in mouse models
(Cheng et al. 2003).

The DNMT inhibitors are not limited to the nucleoside
analogues. RG-108, the analogues of N-phthaloyl-L-trypto-
phan, is a small molecule that directly binds to DNMT1
binding sites and blocks the enzyme. Based on in vitro
studies, it was shown that RG-108 treatment significantly
reduces the global DNA methylation and slows down
tumor cell growth in human cancer cell lines (Brueck-
ner et al. 2005). The low toxicity and high specificity
of RG-108 make it an attractive potential remedy in the
upcoming years. MG98 is a 20-base pair oligonucleotide
having capability to conjugate with 3" un-translated part of
DNMT1 mRNA and blocking gene transcription (Amato
2007). Although there are controversies over the tumor type
sensitivity and effective dose of MG-98, it has exhibited
significant anti-tumor activity with lower toxicity in the
clinic (Winquist et al. 2006).

Bromodomain inhibitors (BETi)

Bromodomain and extra-terminal motif protein (BET)
are the group of protein containing bromodomain that
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recognize acetyl group of histones, and were associated
with transcriptional elongation of acetylated chromatin
(Dawson et al. 2012). BRD4, a well-studied member of
BET family, has essential role in cell mitosis and mainte-
nance of chromatin architecture (Maruyama et al. 2002;
Jang et al. 2005). BRD4 was also shown to bind to the
promoter regions of particular oncogene and mediate gene
transcription. Moreover, the fusion of BRD4 with nuclear
protein in testis (NUT) plays key role in oncogenesis
and tumor growth promotion in NUT midline carcinoma
(French et al. 2008).

The distinctive functionality and specificity of BET pro-
tein make them a potential target for anti-cancer therapeu-
tic interventions. Accordingly, the bromo-domain inhibitor
JQ-1 has shown a promising result in multiple myeloma,
a myc-dependent tumor in the mouse model. JQ-1 binds
competitively to the BRD4 and involves in the displace-
ment of BRD4 fusion oncoprotein from chromatin that
finally leads to cell apoptosis and tumor suppression (Mertz
et al. 2011). However, due to its short half-life, JQ-1 is
not applied in human clinical trial. I-BET-726 is a BET
inhibitor with similar functionality that controls expres-
sion of Bcl2, the key anti-apoptotic factor. This inhibitor
had shown to prevent the development of neuroblastoma
cancer (Wyce et al. 2013). Other BET inhibitors include
BETI151/762, PF-1, RVX-208, BMS-986158, OTXO015,
and PLX-51107 that are under developmental investigation
for clinical use in human medicine (Wadhwa and Nico-
laides 2016).

Histone acetyltransferase inhibitors (HAT})

Different HATis could inhibit the catalytic activity of his-
tone acetyltransferases either in selective or non-selective
manner and were shown to have potential therapeutic prop-
erties for treatment of many diseases. Current researches
are focused mainly on two classes of HATis including
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synthetic small molecules and bi-substrate inhibitors. Lys-
CoA peptide, a potent selective bisubstrate inhibitor of
p300 and p300-dependent transcriptional activation, was
shown to become activated only when it is used in conju-
gation with intermediate cytotoxic detergents and/or via
microinjection. The new promising 300/CREB-binding
(CBP) inhibitor named C-646 binds with high selectivity
to the druggable pocket of p300 and behaves as a cofactor
competitor (Balasubramanyam et al. 2003). Studies have
shown that C-646 could suppress the cell survival and inva-
sion of prostates tumor cells (Santer et al. 2011).

Low potency, instability and antioxidant activity of
HATi are among the factors that limited the therapeutic
functionality of this groups of epigenetic modulators (Wap-
enaar and Dekker 2016).

Histone methyltransferase inhibitors (HMTi)

HMTi is another epigenetic modulator, acting through
deactivation of different HMTs. Taken into consideration
the important roles of EZH2 and DOTIL in cell function,
recent attempts are mostly focused on discovering the
specific EZH2 and DOTIL inhibitors for the treatment of
disease conditions (Morera et al. 2016). Deazaneplanocin-
A, a well-studied EZH?2 inhibitor, showed high selectiv-
ity towards prevention of trimethylation of lysine-27 and
lysine-20 on histone H-3 and H-4, respectively. The com-
pound showed profound apoptotic effects on various cancer
cells, such as liver, lung, brain, breast and prostate. How-
ever, due to the low specificity of deazaneplanocin-A, it
has not yet entered clinical uses. EPZ-5676 is a potent and
selective DOT1L inhibitor acting as S-adenosyl methionine
(SAM) competitor shown to induce tumor regression in the
mouse model of MLL-rearranged leukemia. EPZ-5676 has
currently entered the first phase of the clinical trial for leu-
kemia (Stein et al. 2015).

Lysine demethylase inhibitors (LSDi)

Histone demethylase is classified into two main groups,
including the lysine-specific demethylases 1 and 2
(LSD1/2) and Jumonji domain-containing proteins. Given
the important role of histone demethylases in cancer prolif-
eration and inhibition of tumor suppressor gene as well as
a modulator of stress-evoked transcription in mental retar-
dation, many researches have focused on targeting these
epigenetic modulators for treatment of related diseases
(Morera et al. 2016; Rusconi et al. 2016).

Tranylcypromine and phenelzine are the approved LSD1
inhibitors that were primarily considered as anti-depressant
agents. Currently, many attentions have pointed towards the
application of tranylcypromine and its derivatives in cancer
treatment (Morera et al. 2016). While different subfamilies

of JIMIC demethylases were identified for their anti-prolif-
erative activity, the limited cell permeability and low selec-
tivity are the major challenges to the clinical use of these
compounds.

HDAC inhibitors (HDAC:I)

HDAC inhibitors are among the most promising epigenetic
therapies that act with high specificity against HDACs.
Based on their structure, HDACI is classified into four
groups including hydroxamic acids, benzamides, epoxyke-
tone-containing cyclic tetrapeptides and short-chain fatty
acid (Dokmanovic et al. 2007).

Class I and II of HDAC proteins could be targeted by
hydroxamic acid inhibitors, which have potency for tumors
treatment. Trichostatin-A and Vorinostat are the first
approved hydroxamic acid inhibitors for the advanced, per-
sistent and concurrent T-cell lymphoma (Mann et al. 2007).
Vorinostat triggers hyperacetylation of histones along with
non-histones proteins such as p53 and heat shock pro-
tein-90 that lead to apoptosis and cell death. Vorinostat has
shown to be a fascinating nominee for combination therapy
using non-epigenetic and epigenetic treatments (Richon
2006). The HDAC inhibitor, trichostatin-A, has a marked
improvement in the induced pluripotent stem cells stimu-
lation, and enhancement of cardiac transcriptional factors,
which play a vital role in the transformation of stem cells
into endothelial cells and cardiomyocytes. Other approved
hydroxamic acid inhibitors are panobinostat and belinostat
that could suppress the activity of all types of HDACs and
are indicated for lymphoma and leukemia patients. Among
studied benzamides HDACI, entinostat is a potent thera-
peutic compound that acts selectively against two classes
of HDACs: I and IV. Meanwhile, it is undergoing phase 2
of clinical studies for treatment of refractory and relapsed
Hodgkin lymphoma. Mocetinostat is an approved benza-
mides HDACi with selective activity for the treatment of
myelodysplastic syndrome. Romidepsin is a cyclic tetra-
peptides antibiotic with antineoplastic activity via inhi-
bition of HDAC I and II (Lemoine and Younes 2010). In
2009, romidepsin was approved for the treatment of cuta-
neous T-cell lymphoma patients after receiving systemic
therapy.

Up to date, the combination of anti-cancer and epigenet-
ics drugs has attracted a great research attention in cancer
therapy. Increased specificity and reduced toxic effects
as well as overcoming drug resistance, are the emerging
advantages of the combination therapy over monother-
apy. HDAC inhibitors are also involved in demethylation
of silent tumor suppressor genes via down-regulation of
DNMT-1, thus suggesting a synergistic effect of HDACi
and DNMT inhibitor combination. Based on clinical
research on patients with recurrent metastatic NSCLC,
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use of azacitidine and entinostat demonstrated profound
decrease in hypermethylation of genes, promoter regions
and showed enhanced antitumor activity (Vendetti et al.
2015).

MicroRNA-based therapeutic

Targeting non-coding RNAs associated with the epigenetic
regulations is another promising strategy for treatment of
a variety of diseases caused by epigenetic modifications
(Panzeri et al. 2016). As previously described, non-coding
RNAs are divided into two main groups: microRNA and
long non-coding RNA. Compared to IncRNAs, we now
have a much better understanding of biological roles of
miRNA. Due to their small size, genetic targeting of this
class of non-coding RNA is possible. Currently, two major
types of miRNA-based therapy exist including individual
miRNA mimics and inhibitors (anti-miRs) that modulate
the pathological conditions by increasing or silencing the
specific miRNA expressions, respectively (Schmidt 2014).
The antisense strand of miRNA mimic is identical to the
sequence of target miRNA, thus, binds to the RNA-induced
silencing complex (RISC) and regulates the expression of
the target gene (Kasinski et al. 2015). In contrast, inhibi-
tion of an overexpressed miRNA can be achieved using
anti-miRNA oligonucleotide (AMO). AMOs are synthetic
reverse complements that could bind and inactivate tar-
geted miRNA through various mechanisms (Lennox and
Behlke 2011). Up to date, three miRNA-based therapeu-
tics have entered clinical trials named miravirsen, RG-101,
and MRX34. Miravirsen an anti-sense oligonucleotide
that targeting miR-122 was the first drug for treatment of
hepatitis C virus infection (HCV) (Gebert et al. 2014). The
anti-miR-122 compound RG-101 is an N-acetyl p-galac-
tosamine (GalNAc)-conjugated anti-miR-122 which is cur-
rently in phase II clinical trials (Baek et al. 2014). MRX34
is a miR-34a mimic-loaded liposomal nanoparticle with
exploiting tumor suppressing the function of miR-34 for
the treatment of cancer (Cortez et al. 2015).

Like other gene-based therapeutics, miRNA mimics
and AMOs are susceptible to nuclease degradation and
reticuloendothelial system clearance (Chen et al. 2015b).
Thus, an efficient gene delivery strategy will be needed.
To date, huge studies have been conducted to improve the
stability of miRNA-based therapeutics and transport them
efficiently to the target cells. Chemical modifications of
targeting oligonucleotide such as 2’-deoxy oligonucleo-
tides, 2’-O-methyl-modified oligoribonucleotides (2’-
OMes), cholesterol moiety—conjugated 2’-OMe (antago-
miR) (Kriitzfeldt et al. 2005), locked nucleic acid (LNA)
(Elmén et al. 2008), peptide nucleic acids (PNA) (Fabani
et al. 2010), oligonucleotides containing 2’-O-methoxye-
thyl (2’-MOE), 2’-flouro (2'-F), and phosphorothioate (PS)
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backbone modifications have been employed to increase
the nucleic acid resistance against nucleases (Lennox and
Behlke 2011). Another approach for miRNA-based gene
delivery is exploiting the physical force like ultrasound
and microinjection to instantaneously disrupt the integrity
of cell membrane and facilitate the gene transfection (Joo
et al. 2014; Kwekkeboom et al. 2015). Besides, biological
and chemical vectors are getting much attention because of
their potential capacity to deliver the transgene in a secure
way. Viral vectors containing the sequence of a mature
miRNA and providing its expression in target cell have
revealed high transfection efficiency in some reports (Pfef-
fer et al. 2004; Miyazaki et al. 2012). The other biological
vector example worth mentioning is exosome. Exosomes
are one of the subsets of extracellular vesicles whose func-
tion is the intracellular transport of genetic materials;
therefore, they may be a good candidate for exogenous
oligonucleotides delivery to target cells (Momen-Heravi
et al. 2014; Emanueli et al. 2015; Gambari 2015). Various
chemical gene delivery vehicles including lipids (Trang
et al. 2011; McLendon et al. 2015), polymers (Chien et al.
2015; Louw et al. 2016; Tu et al. 2017), carbon nanotubes
(Masotti et al. 2016) and inorganic nanoparticles (Crew
et al. 2011) have be en designed with the purpose of trans-
fection efficiency enhancement.

Despite the recent discoveries in miRNAs biological
roles and progresses in miRNA-based therapy, more under-
standing and elucidating potentiality of miRNAs is still
needed for development of new miRNA-based therapeu-
tics. In fact, it is expected that miRNA-based therapeutics
will be one of the major classes of therapeutic molecules in
the near future.

Nutrition and toxicant-induced epigenetic
alterations

Cumulative studies have indicated that epigenetic machin-
ery is sensitive to human lifestyle factors such as diet,
social status, stress, etc. (Choi and Friso 2010). Indeed
there are widely scattered reports on epigenetic effects of
dietary components (nutrients, metabolites, and bioactive
food compounds) and their possible role in the reversal of
abnormal epigenetic marks (Aggarwal et al. 2015) (Fig. 2).
Therefore, finding strategies that use dietary factors for
targeting epigenetic modifications could be an alternative
method for treating epigenetic pathophysiological condi-
tions including cancer, aging, Alzheimer’s, and brain, car-
diometabolic, immune, metabolic, and neurodegenerative
diseases.

Different dietary compounds including micro- and
macronutrients including methyl donors (folate, cho-
line, and various vitamins) and phytochemicals (such as
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thiosulfonates, polyphenols, glucosinolates, or terpenoids)
have shown to be able to affect epigenetic mechanisms
(Prebet and Gore 2015). Various dietary methyl donors
participate in one-carbon metabolism and change DNA
methylation through methionine pathways by regulating
the level of co-substrates S-adenosyl methionine (SAM)
and methyltransferase inhibitor S-adenosyl-homocysteine
(SAH) (Park et al. 2012). Folate and its partners, vitamin
By, and B, are the most important methyl donors. In case
of folate deficiency, choline, betaine, and methionine are
critical for maintenance of adequate SAM levels and thus
to assure adequate methylation (Prebet and Gore 2015).

Other chemopreventive resources for epigenetic altera-
tions are the dietary polyphenols including curcumin,
genistein, epigallocatechin gallate (EGCG), resveratrol,
sulforaphane, and equol. These bioactive compounds are
commonly found in green tea, vegetables, fruits and red
wine. Different studies have shown that polyphenols medi-
ated the reversal of abnormal epigenetic alterations and,
therefore, can change abnormal gene expression (Aggarwal
et al. 2015). The chemopreventative potential of these com-
pounds is attributed to their ability to inhibit DNMT as well
as their ability to catalyze histone modifications. Relatively,
it was shown that curcumin inhibits HAT activity whereas
resveratrol, sulforaphane, and butyrate inhibit HDAC, and
therefore influence the expression of specific genes (Choi
and Friso 2010).

Water-soluble B vitamin, biotin, niacin and pantothenic
acid are well studied for their epigenomic reversal activ-
ity. For example, biotin is a substrate for histone biotinyla-
tion and niacin for histone ADP-ribosylation (Remely et al.
2015). Vitamin D; can be utilized as an epigenetic therapy
for cancers at early-stage based on its chemoprevention
roles in demethylation and upregulation of tumor suppres-
sor genes (Stefanska et al. 2010). Also, studies have shown
that vitamin A could affect histone methylation of genes
involved in the production of several cytokines and thus
changes the cytokines responses (Arts et al. 2015).

Although essential elements (selenium, zinc manga-
nese copper, etc.) have long been investigated for their
anticancer properties, their key regulatory role in chang-
ing abnormal epigenetic marks is being emerged. Dif-
ferent studies have shown that selenium reduces DNA
methylation potential by altering SAM and S-adeno-
sylhomocysteine concentrations, the key intermediate
metabolites of regulatory one-carbon methylation path-
way (Redman et al. 1998; Uthus et al. 2006). Zinc is the
cofactor of several enzymes involved in the methionine
pathway. Its deficiency decreased SAM turnover, there-
fore affecting methylation of both DNA and histones
(Wallwork and Duerre 1985).

It is widely believed that epigenetic modifications are
the key controller of cell fates during early embryonic

and primordial cell development. Environmental expo-
sure in utero highly influences the epigenetic patterns of
offspring resulting in alterations of gene expression and
implementation of different pathophysiological condi-
tions. Furthermore, one can agree that embryonic period
is the time that environmental toxicants could exert their
influence in high level to change epigenetic normal pat-
tern (Rezvanfar et al. 2016). In this regards, natural
chemoprotective compounds could be applied as impor-
tant protective agents against environmental epigenetic
modulators. Moreover, nutrition has a major protective
impact on the epigenome of the adult during early adoles-
cent and gestation period (Chango and Pogribny 2015).

Conclusion

Based on the emerging key regulatory role of epigenetic
modulation in the etiology of pathophysiological con-
ditions, it is likely that epigenetic area will become the
focus of future biological and pharmaceutical research.
Still, more attempts are needed to discover the underly-
ing mechanisms of gene-specific epigenetic modifica-
tions and their association with particular malignancies.
Considering the important role of epigenetic abnormali-
ties in the etiology of many diseases, investigating the
epigenotoxic impact of chemicals is of high priority to
human health. Therefore, a shift towards more concen-
trated epigenetic research is required for evaluation of
chemical toxicity. At the time being, few epigenetic drugs
are available in the market, and many are in the pre-
clinical and clinical trial phases. Besides pharmaceutical
approaches, there is growing body of evidence that epige-
netically active food compounds play a protective role in
the regulation of pathological progressions and could be
considered as a potential alternative for epigenetic ther-
apy. In this regard, nutritional research and policies have
initiated to provide guidelines for sufficient daily intake
of nutrients and prevent nutritional deficiencies.
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