

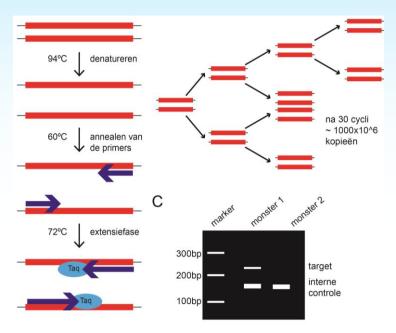
Real-Time PCR

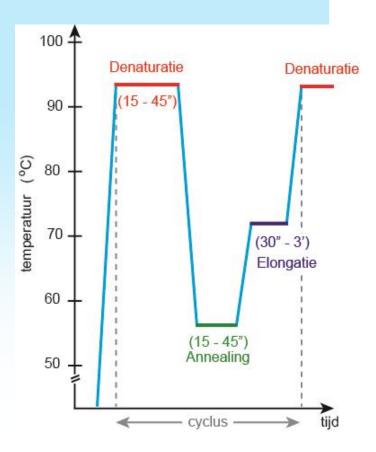
August 2014 Willem van Leeuwen

Real-Time PCR

AN INTRODUCTION

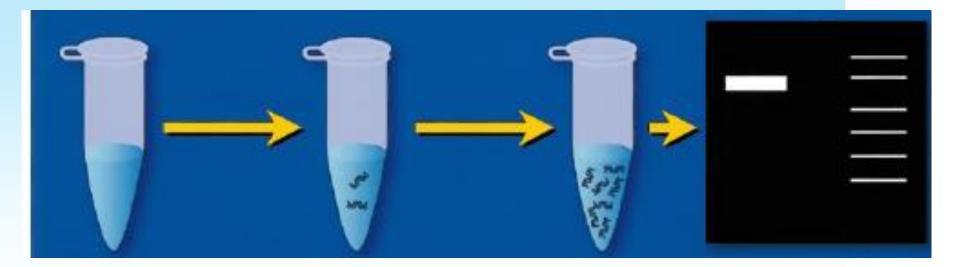
qPCR cyclers




Eurogentec Smartcycler

PCR amplification

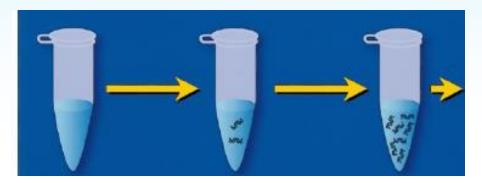
- PCR cycle: denaturation, annealing, elongation
- Number of cycles: 25-40
- PCR reagent: template, dNTPs, buffer, primers (probe), Taq NA polymerase,

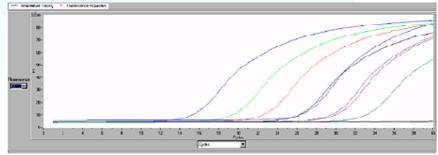

C.C.Orelio en M.J.Plug; Basisprincipes van de PCR 2013

Conventional PCR procedure

DNA isolation

PCR amplification Gel elektrophoresis + Southern blotting


Cockerill FR III. Arch Pathol Lab Med. 2003;127:1112



Real-Time PCR (qPCR)

- Detection: measure fluorescence in each cycle
- Follow PCR cycles in real time
- Simultaneous detection of products in several reactions in 4-5 channels (multiplex PCR)

Conventional PCR versus qPCR

Conventional PCR:

- endpoint measurement of synthesized PCR product
- qualitative
- post-PCR analysis using agarose gel, southern blot,....
- contamination (open system)
- Primers

<u>qPCR:</u>

- measurement of fluorescence intencity in every cycle (= PCR product)
- qualitative and quantitative
- Post-PCR analyse m.b.v.
 Computer
- low risk on contamination (closed system)
- primers and fluorescent probe or -dye

Detection

non specific or specific

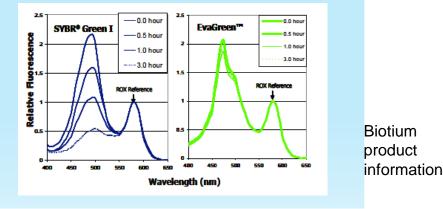
Direct detection with non-specific DNA intercalating dyes:

- SYBR®Green I
- BEBO, SYTO9, Chromofy
- LCGreen(Plus+), EvaGreen
- PicoGreen®

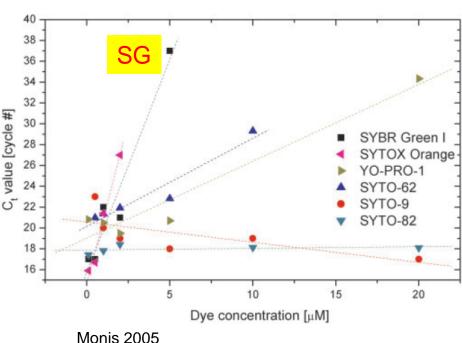
Indirect detection with specific hybridization:

- Hydrolization (TaqMan) probe
- Molecular beacons
- FRET/ hybridisation probes

Α Non specific chemistry Intercalation dsDNA 94 °C denatureren Eva Green> SYBr 72 °C extensiefase Green 55 °C annealen van SYBR* Green I Only fluorescence de primers in dsDNA Low-Level Saturation Dye Jumping Occurs LCGreen[®] igh-Level Saturation

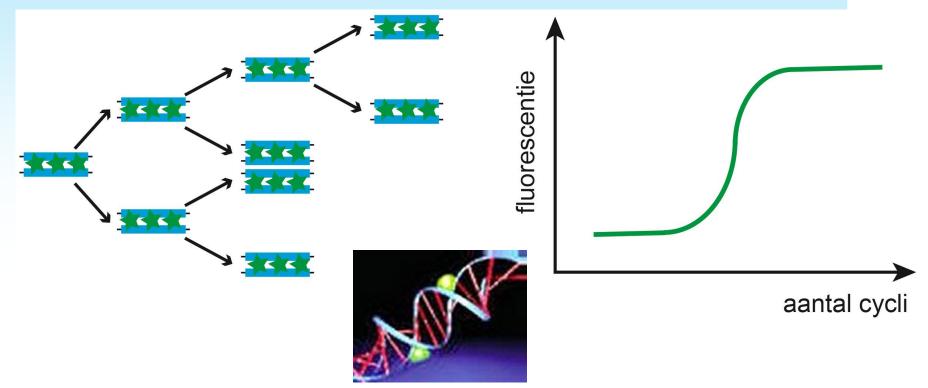

C.C.Orelio en M.J.Plug; Basisprincipes van de PCR 2013

Fluorescence intensity: differs per method/fluorochrome


- Heat-lability (99 °C)
 - More background
 - SYBr Green > LC Green
- 'inhibition' PCR

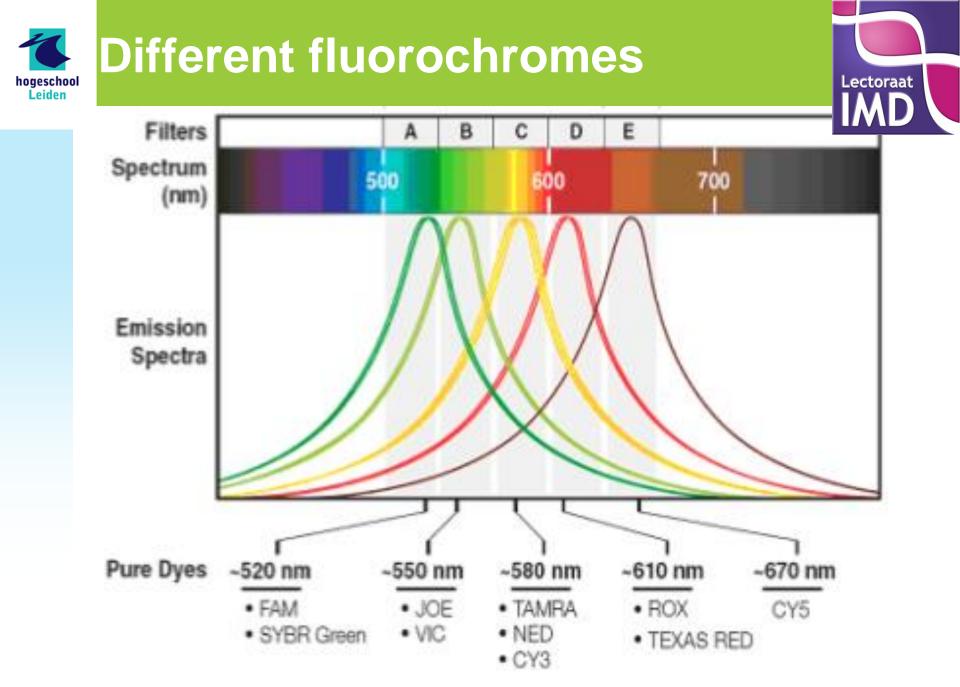
hogeschool Leiden

- increase T_m
- SYBR Green:
 - Not too much
 - <1 uM
- Decrease of efficiency
 New titration


Lectoraat

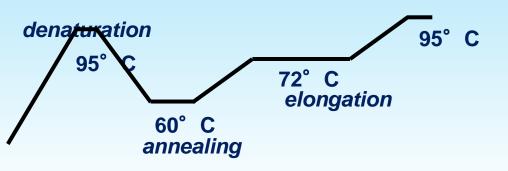
Lectoraat

- non specific
- dsDNA \hat{T} -> fluorescence intensity \hat{T}



Probes

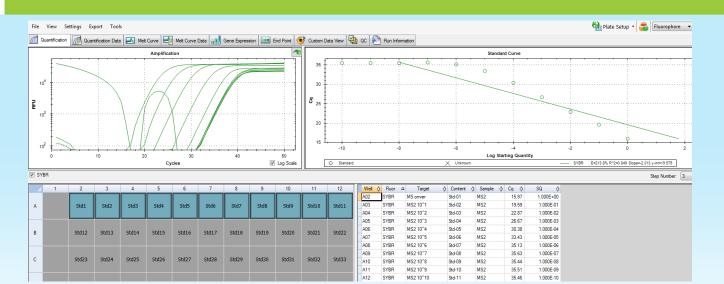
- hybridize specifically to DNA sequence in PCR product
- Fluorescent dye (reporter) linked to 5'hydrolization probe
- Quencher linked to 3'- end of hydrolization probe
- Quencher absorbs energy and quenched fluorescent signal

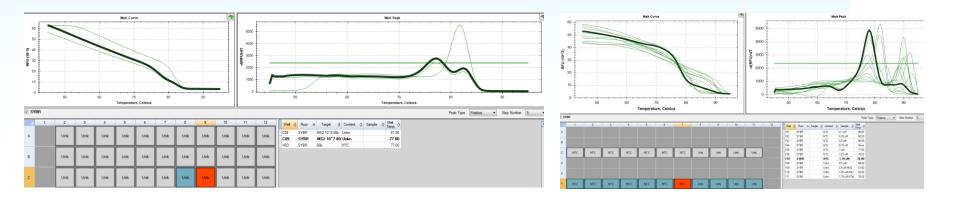


http://www3.appliedbiosystems.com/AB_Home/index.htm

On what moment will the signal be measured?

- Same moment?
- Two or three-step protocol?
- Same fluorescence intensity?

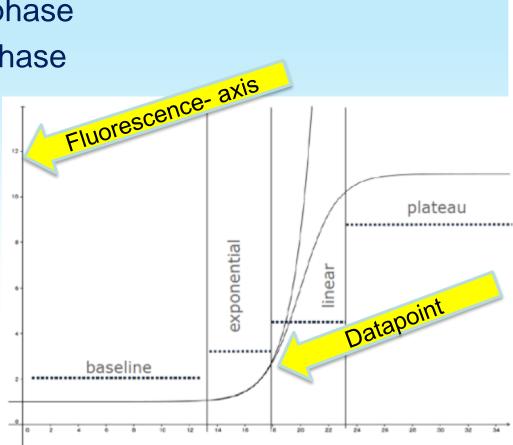

Lectoraat


- DNA binding dyes (end elongation; 2/3 step)
- Hydrolyse probe (end elongation; 2/3 staps)
- Hybridization/Dual probe (before elongation only in 3-step protocol)

In a PCR validation it is better to use a non-specific detection (detection of by-products, influencing Cq)

Lectoraat

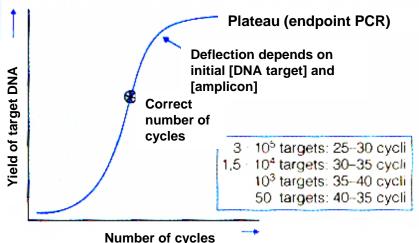
The amplification curve in more detail



Most frequent used display of amplification curve

- Start-up phase
- early exponential phase
- Late exponential phase
- Linear phase
- Plateau phase

Lectoraat

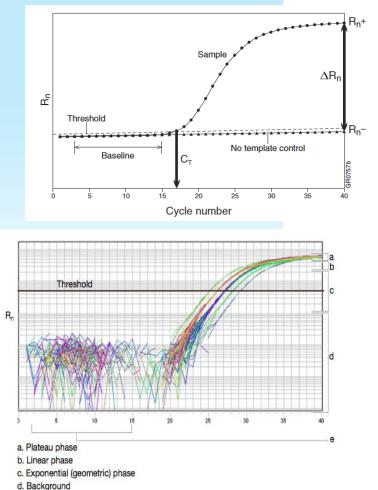

Development in amplicon synthesis

- DNA synthesis of PCR product via S curve
- Length start-up phase

hogeschool

Leiden

- Depends on input DNA [conc. target]
- Most effective at exponential increase:
- Effectivity decreases on a certain moment
 - Synthesis of amplicons may reduced rather than by-products
- Synthesis stops
 - Reaction componentshave been used
 - Plateau phase



TopLab

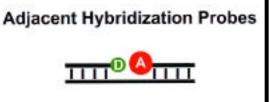
'Threshold setting'

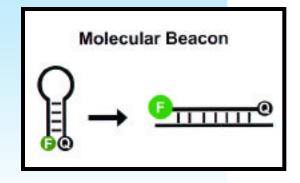
- linear or log-linear display
 Watch the differences!
- 'Threshold setting'
 - Automatic (average Ifluor within cycle 3 and 15)
 - Manual (subjective) in middle of log-linear curve

Lectoraat

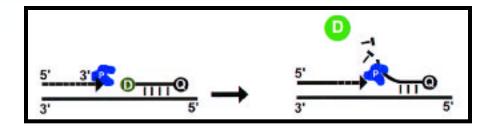
amplificatiecurven

MIQE guidelines and nomenclature


- Minimum Information for publication of Quantitative Real-Time PCR Experiments
- Uniformity in terminology (publication)
 - qPCR (quantitative real-time PCR)
 - RT-qPCR (reverse transcription qPCR)
 - Cq, quantification cycle, not:
 - threshold cycle (Ct),
 - crossing point (Cp),
 - take-off point (TOP), etc



Probe classification

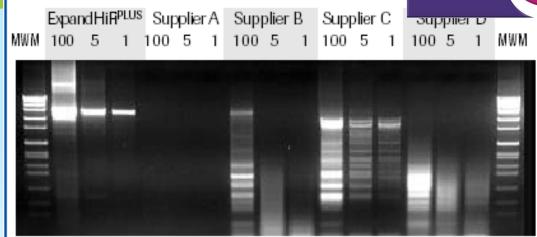


- labelde probes → only signal through hybridization to specific DNA target
 - 'molecular beacon', 'dual hybridisation' probe
 - Meltcurve analysis possible
 - hydrolyzion probe (former: TaqMan probe)
 - MCA not possible

Detection limit, reliability and efficiency of PCR

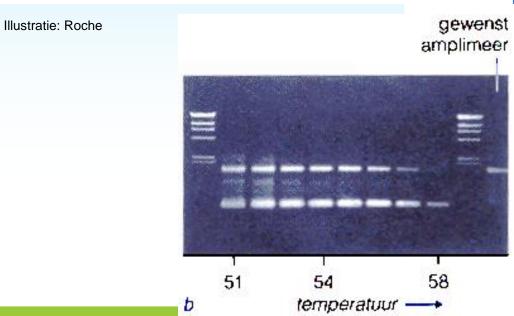
PCR reliability

- Check specificity
 - The size of expected product?
 - By-products (non-specific)
 - No product in negative control or in negative samples



PCR reliability: choice of the enzyme

Reliability depends on .:


- •Quality and quantity of enzyme
- •Type Taq
 - proofreading
 - hot-start
- •Template quantity
- Primers
 - concentration
 - Primer design
 - Tm

•dNTP quantity•Mg2+ concentration

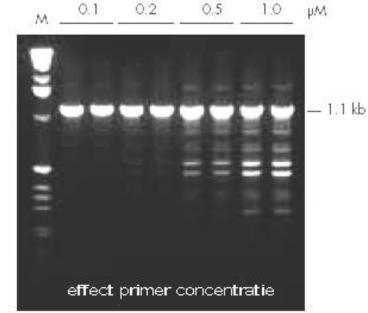
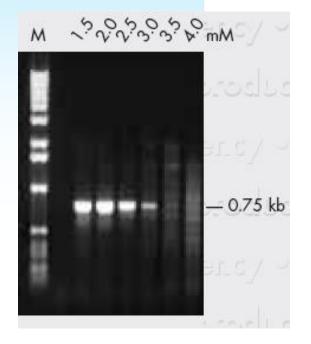

TopLab

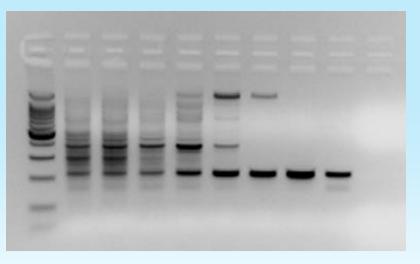
Figure 2: Comparison of Expand High Fidelity^{PLUS} Enzyme Blend with four commercially available blends.

PCR reliability: primer concentration


hogeschool Leiden

primer concentration too high

=> undesirable products


Mg concentration to high=> inhibition, undesirable products

Mg concentration too low=> Taq polymerase not active

PCR reliability: optimization Tm

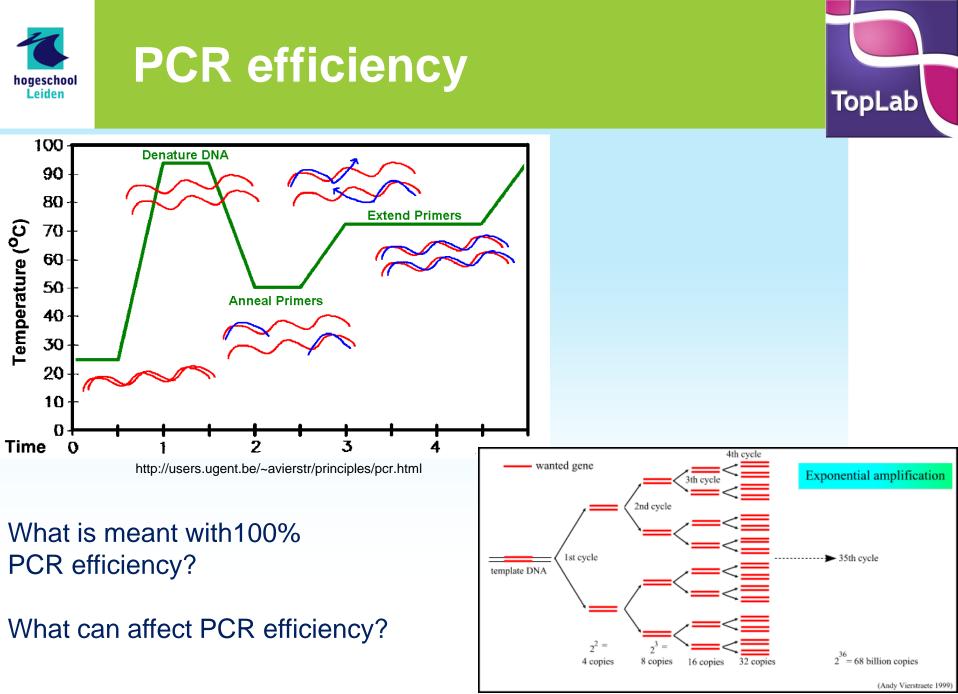
Factor V Leiden 35 tot 75° gradiënt

- less mispriming/maximum yield
- Correct T_m-calculation
- Thermodynamic approachj
- Normal PCR
 - $T_m = -5 \circ C$
 - "degenerate primers"; $T_m \downarrow (15-20^{\circ} C)$

TopLab

PCR sensitivity

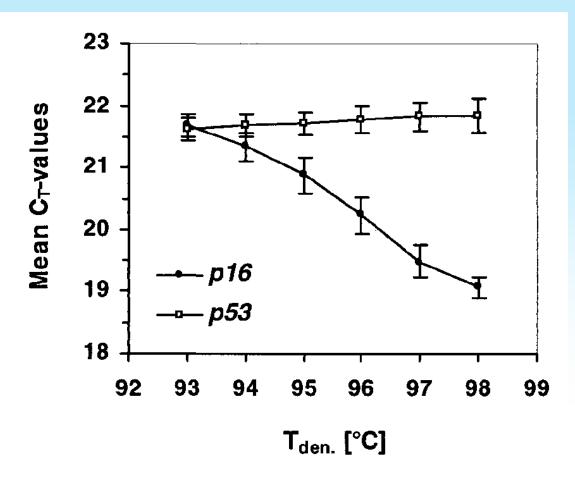
- What is the detection limit?
 - Theoretically 1 molecule may be detected
 - after 30 cycles, 1 DNA molecule has been increased to 530 millon copies
 - Titrate input DNA to determine detection limit or PCR test sensitivity

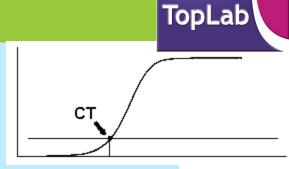


PCR inhibition

- Inhibitors in the sample
 - Hemoglobin
 - heparin
- Inhibitors in DNA isolation/ preparation protocol
 - Ethanol
 - EDTA
- In PCR reaction
 - High target DNA concentration

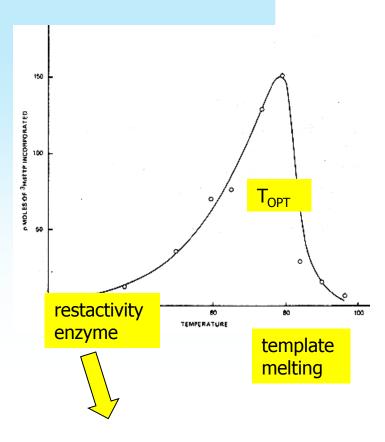
stof	concentratie
fenol	>2% vv
ethanol	>1% vv
isopropanol	>1% vv
NaAc	>5mM
NaCl	>25mM
EDTA	>0/5mM
CTAB	0,05
SDS	0,05
hemoglobine	>1 mg/ml
heparine	>0.15U/ml
RT-mix	>15%


TopLab


http://users.ugent.be/~avierstr/principles/pcr.html

PCR efficiency: denaturation effect

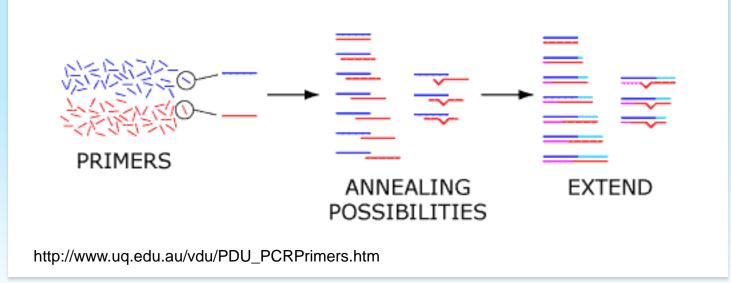
Wilhelm et al 2000 Clinical Chemistry


Real-time PCR: C_q low: high yield initial target

Melting of genomic DNA is important for PCR efficiency in the first few cycles

PCR efficiency: denaturation and mispriming

- Primers bind to DNA target before PCR has started
- Taq polymerase: dsDNA + 3'-OH = start DNA synthesis
- =>rest-activity Taq polymerase starts DNA synthesis
- At insufficient stringency
 - Cross hybridization/ undesirable hybridization
- reasons:
 - Bad primer design (primer-dimers)
 - Too much Mg conc (increases stability primer-DNA)



TopLab

PCR efficiency: mispriming and primer-dimers

avoid

- complementarity of primers at 3' end
- long single nucleotide repeat stretches
- high CG% level at 3' end of primers

PCR efficiency: decrease mispriming

TopLab

- T_m optimalise (use gradient PCR)
- Hot start; time release enzymes
- Increase $T_m \uparrow$ primers (long primers)
- Competitor primers
- Short synthesis/elongation time
- lower concentration of
 - dNTP
 - primers
 - Taq DNApolymerase

PCR efficiency

Can be influenced by reaction ingredients

TopLab

Buffer

.

- Concentration Mg
- Concentration dNTPs, primers

- Can also be influenced by
 - Quantity input target
 - Secundary structures in amplicon
 - inhibitors in matrix (sample)

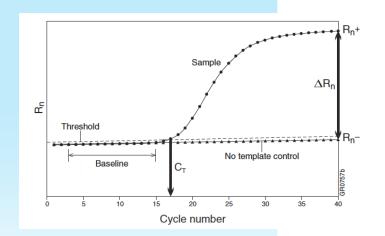
CYCLE	AMOUNT OF DNA	AMOUNT OF DNA	AMOUNT OF DNA	AMOUNT OF DNA	
21	100 <mark>% EFFICIENCY</mark>	90% EFFICIENCY	80% EFFICIENCY	70% EFFICIENCY	
0	- 1	1	1	1	
hogesch		2	2	2	Lectoraat
2eiden	4	4	3	3	
3	8	7	6	5	
4	16	13	10	8	Na 1 cyclus
5	32	25	19	14	100% = 2.00x
6	64	47	34	24	90% = 1.90x
7	128	89	61	41	
8	256	170	110	70	80% = 1.80x
9	512	323	198	119	70% =
10	1,024	613	357	202	
11	2,048	1,165	643	343	
12	4,096	2,213	1,157	583	De toename per cyclus:
13	8,192	4,205	2,082	990	2 ⁿ , 1,9 ⁿ , 1,8 ⁿ , 1,7 ⁿ
14	16,384	7,990	3,748	1,684	
15	32,768	15,181	6,747	2,862	
16	65,536	28,844	12,144	4,866	
17	131,072	54,804	21,859	8,272	
18	262,144	104,127	39,346	14,063	
19	524,288	197,842	70,824	23,907	
20	1,048,576	375,900	127,482	40,642	
21	2,097,152	714,209	229,468	69,092	
22	4,194,304	1,356,998	413,043	117,456	
23	8,388,608	2,578,296	743,477	199,676	
24	16,777,216	4,898,763	1,338,259	339,449	
25	33,554,432	9,307,650	2,408,866		
26	67,108,864	17,684,534	4,335,959	981,007	
27	134,217,728	33,600,615	7,804,726	1,667,711	
28	268,435,456	63,841,168	14,048,506	2,835,109	
29	536,870,912	121,298,220	25,287,311	4,819,686	36
30	1,073,741,824	230,466,618	45,517,160	8,193,466	

How to measure PCR efficiency?

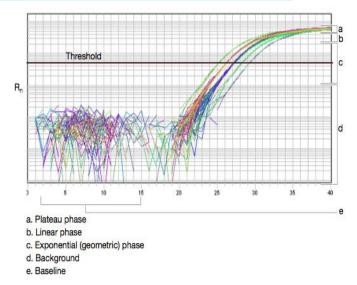
- Efficiency real-time PCR
 - 100% efficient: 2ⁿ function
 - 90% efficient: 1.9ⁿ
- Derived from C_q 's reference series
 - Different techniques
 (threshold, noise band, fit point, LinReg, SDM, curve fit)
- Efficiency analysis
 - slope individual amplification curve (tangent line)
 - Slope reference curve
 (workshop ref curve)

				AMOUNT OF DNA	CYCLE
	70% EFFICIENCY	80% EFFICIENCY	90% EFFICIENCY	100% EFFICIENCY	
	1	1	1	1	0
	2	2	2	2	1
	3	3	4	4	2
	5	6	7	8	3
A	8	10	13	16	4
4	14	19	25	32	5
1	24	34	47	64	6
9	41	61	89	128	7
	70	110	170	256	8
8	119	198	323	512	9
	202	357	613	1,024	10
7	343	643	1,165	2,048	11
	583	1,157	2,213	4,096	12
	990	2,082	4,205	8,192	13
	1,684	3,748	7,990	16,384	14
	2,862	6,747	15,181	32,768	15
	4,866	12,144	28,844	65,536	16
	8,272	21,859	54,804	131,072	17
	14,063	39,346	104,127	262,144	18
	23,907	70,824	197,842	524,288	19
	40,642	127,482	375,900	1,048,576	20
AF	69,092	229,468	714,209	2,097,152	21
fold	117,456	413,043	1,356,998	4,194,304	22
	199,676	743,477	2,578,296	8,388,608	23
(ef	339,449	1,338,259	4,898,763	16,777,216	24
(0.	577,063	2,408,866	9,307,650	33,554,432	25
	981,007	4,335,959	17,684,534	67,108,864	26
	1,667,711	7,804,726	33,600,615	134,217,728	27
	2,835,109	14,048,506	63,841,168	268,435,456	28
	4,819,686	25,287,311	121,298,220	536,870,912	29
	8,193,466	45,517,160	230,466,618	1,073,741,824	30

AFTER 1 CYCLE 100% = 2.00x 90% = 1.90x 80% = 1.80x 70% = 1.70x


AFTER N CYCLES: fold increase = (efficiency)ⁿ

37



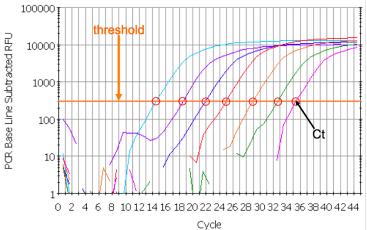
C_q: threshold setting method

- 'Threshold setting'
 - Automatic (software PCR processor)
 - Manual setting: middle loglinear S-curve
- In what way determined?
 - Baseline/background (= average Ifluor between cycle 3 and 15)

Lectoraat

Efficiency assay

Lectoraat

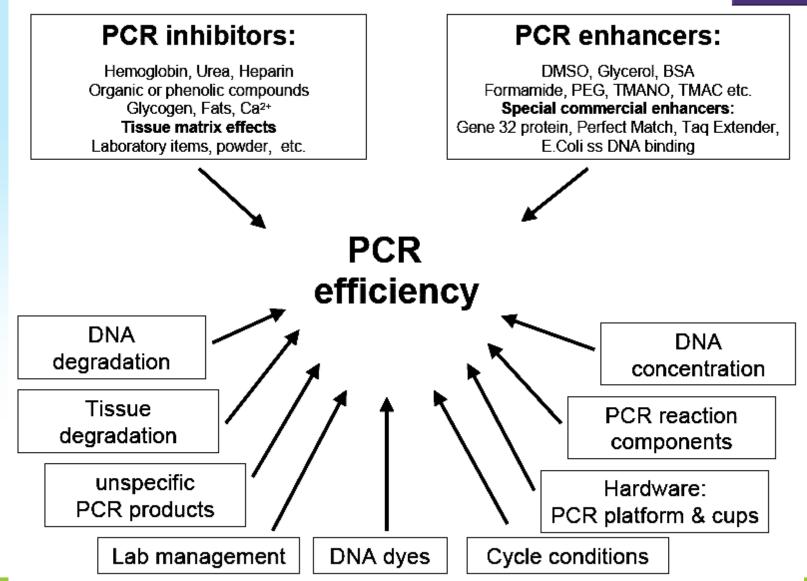

- why?
- How?
- Derived from exponential (log-linear) part and $C_q s$ from reference curve
 - 100% efficient: 2ⁿ function
 - 90% efficient: 1.9ⁿ
- many methods: most frequently used
- Slope reference- curve
 - If not possible: individual curve
 - Tangent line on inflection point(1st derivative): slope
 - EFFICIENCY: E= 10^{slope}

hogeschool Leiden

Quality criteria for amplification curve

- slope
 - Equal at different dilutions (1,8-2,0)
 - Too steep: by-products
 - Too flat: inhibition
- Distance between consecutive curves
 - equal
 - Approx 3,3 units (efficiency 100%)
- ΔRn of individual curves
 - equal

Causes plateau phase; efficiency DNA synthesis reduces


TopLab

- dNTP and primers lacking
 - usage, damage
- Inhibition by synthesized PCR products
- Competition
 - primers \Leftrightarrow complementary amplicons (renaturation)
 - Taq DNA polymerase: amplicons.
- Limited enzyme capacity
 - Many PCR products have to be synthesized every cycle
 - Enzyme activity decreases in time (temperature)

In conclusion: PCR efficiency

finally

Bep van Pelt-Verkuil

For what purposes is (q/RT) PCR used?

• Which nomenclature?

• How do you interpret data/results?