

PCR validation

August 2014 Willem van Leeuwen

Validation of PCR test

Primers, probes has been designed. PCR protocol developed.

- Does the new developed assay meet all performance criteria?
- Is the outcome clinically relevant?

VALIDATION OF THE PCR TEST

Validation of PCR test

- 1. First line: infra structure lab, performance and management lab
- 2. Second line: design PCR for specific target(s)
- 3. Second line: technical validation (IQA)
- 4. Second line: clinical validation, concordance test (gold standard method)
- 5. Third line: EQA

The PCR reference curve

technical validation part 1

Applications of the PCR refernce curve

- Qualitative identification of the sample
- To identify the 'analytical range', LLOD, LOD and LOQ of a (RT)-qPCR analysis
- To compare the curves e.g. for the optimization of single- and multiplex (RT)-qPCR using the slope of the curve
- TAKE CARE: quality requirements for reference curve

PCR reference curve

 Inverse association
 between C_q and initial
 concentration (viralor bacterial load)

Q with respect to PCR reference curve

- The distance between the consecutive curves in a 10 Log dilution series of the sample is ideally 3.3 Cq-units
- Watwhat is happening when the distance becomes 4?
- In that case, what happens with the slope? Steeper or flatter?
- What is the ideal slope?
- What happens with the Cq value when by-products appear using an:
 - Intercalating dye?
 - Probe?

Derivative of PCR reference curve

hogeschool Leiden

Requirements for the PCR reference curve (validation)

- Dilution series (10X): at least 5 log scales
- Datapoint: 3-5 times in separate tests (for SD calculation)
 - SD max <5 % per datapoint
- Reference curve:
 - Linear correlation R \geq 0.985 (or R² \geq 0,95)
 - Slope of linear line: -3,1 tot -3,6
 - Usable area (analytical range)
 - All points with SD <5%
 - At least 10xSD difference with negative sample
 - Run to run variation <5%
- TAKE CARE: dilution reagent (saline, water, matrix) is not always stable!

What is striking in the 10-fold dilution series (2)?

12.000

2.000

3.000

4.000

Log CO

5.000

6.000

7.000

8.000

Determine the analytical range

- Using the refernce curve (used as a calibrationcurve)
 - SD criterium (5%), datapoints (upper- and lower level) and known concentrations

- Upper level:dilute sample
- Lower level: more complex, for reasons of false negativity, probability of detection and proper cutoff value

Refernce curve: 'analytical range'

TopLab

- Analytical range:
 - Concentration area in which test results are reliable (also useful area for quantification)

onbekenden
 standaarden
 helling: -3,831
 Y-intercept: 49,453
 correlatie coëfficiënt: 0,992

hogeschool Leiden

Which datapoints are suitable?

 Check with melting curve analysis!

TopLab

 10⁵ should be excluded! Shape of curve is OK! watch ΔCq

• Can you extrapolate to define 'cut off' (interception Y-axis)?

LOD, LOQ

- LOD: lowest concentration of sample where >95% of the testruns give positive results (stability of the test)
- LOQ: highest and lowest concentration of a sample that can be detected with acceptable precision and accuracy

Cycle number

Cycle number

Quality assurance PCR design

technical validation part 2

PCR specificity on different levels

- Primer specificity
- Amplicon specificity
- Specificity method to determine
 - Understanding FP; FN results
 - "fit" analytical range with sample?

- Diagnostic specificity
 - Differentiation between "health/disease"?

- 1. Start with clean target DNA (culture) in clean environment (water, buffer) ref curve
- Start with known POS/NEG samples, select strong pos, weak but consistent pos and negative samples + NTC (develop IC)
- Proper results with standards and controls
- 3. Same in matrix (check again analytical range)

Technical validation: quality criteria

- sensitivity
- Analytical sensitivity/specificity
 - using ref curve
- Accurate
 - Correctness and precision
- Reproducibility

Quality criteria Accuracy; balansce between correctness and precision TopLab

- Amplicon
 - correct:
 - Length
 - sequence
 - incorrect:
 - Mispriming
 - FN
 - Not precise:
 - Accidental and systematic mistakes
 - [Assessment runs]

Quality criteria: precision, difference between PCRs

- Two targets
 - correctness same
 - Precision differs
 - Important in reaction control and monitoring

quality criteria: reproducibility

Int quality controles

- Run to run (reproducibility)
- Certification of reagents
 - parallel assays
 - Helps with identification issues
 - loss of quality in current batch
 - Deviations in new batch
 - Use for Taq DNApol, primers, probes, controls, standards
- Monitoring of controls (plot)

Validation of a new test; concordance

- determine:
 - Accuracy
 - Control samples; known pos/neg samples
 - Method to calculate specificity/sensitivity
 - Diagnostic specificity/sensitivity
 - Influence of FP/FN on convenience of test
 - Define a reference method (objective/indepent)
 - Culture, microscopy, ELISA
 - Ref methods is existing diagnostics: gold standard
 - Determine FN; FP

Concordance test (= association between tests)

- observed concordance
 - test A
 - PCR
 - conventional
 - Single plex
 - test B
 - Real Time
 - multiplex

	methode A	
methode B	POS	NEG
POS	۵	b
NEG	С	d

TopLab

a + d Observed = Obs = -----concordance a + b + c + d

Concordance test; using known POS/NEG samples

a + d

a + b + c + d

Observed = Obs =

concordance

- 100%
 - c and b zero
- <100%
 - Different results
 - method B new
 - more POS (b): test better; precision
 - more POS (c) test worse; preciesion

	methode A	
methode B	POS	NEG
POS	۵	Ь
NEG	с	d

Clinical samples: Concordance test (C3)

TABLE 2

Stool samples diagnosed according to "gold standard" diagnosis and singleplex and multiplex real-time PCR assays

Organisms	"Gold standard" diagnosis	Singleplex real-time PCR	Multiplex real-time PCR
E. histolytica only	19	20	19
G. intestinalis only	29	27	28
Cryptosporidium spp.	25	22	21
E. histolytica and G. intestinalis	21	19	17
E. histolytica and Cryptosporidium	2	2	2
spp.	2	3	2
<i>Cryptosporidium</i> spp. and <i>G.</i> <i>intestinalis</i>	4	4	5
Negative for all three parasites	29	34	37
Total	129	129	129

Analytical sensitivity

E. histolytica	Multiplex real-time PCR assay		Singleplex real-time PCR assay	
'Gold standard diagnosis"	Positive	Negative	Positive	Negative
Positive	36	6	40	2
Negative	2	88	1	86
C	38	91	41	88

ELISA versus single/multiplex PCR

HAQUE Am. J. Trop. Med. Hyg., 76, 2007,713

Endphase implementation test

- make a SOP
- define
 - 1^e, 2^e, line controls (IQA)
 - Planning 3^e line controls (EQA)
- Monitor controls

Surveillance of PCR quality; diagnostic validation

validation part 3

Kwaliteitsborging; 3 niveau's

- Lab organisation/-management
- Technical PCR test
- Special requirements test for clinics
 - Healthy and disease correctly classified with test
 - disease: test POS
 - healthy: test NEG

Specificity of PCR; in diagnostics

- Clinician:
 - yes/no answer
- Differential diagnose
 - yes/no not "sharp" defined
 - Additional info is needed (other tests; clinical anamnesis)
 - Important: risk on..... / probability

Specificity of PCR; in diagnostics

Populations separated by threshold (T); yes/no answer 100% certain

Dynamic discrimination of populations

Populations overlap \rightarrow FP/FN arises at threshold

Conclusion: there will be false diagnoses

Specificity of PCR; in diagnostics

- Fals positivity not acceptable
 - Invasive treatment as result of diagnose
 - Patient not ill \rightarrow therapy unacceptable
 - T-lijn shifts to the right on X-axis
 - Only "true positive" fals within the criterion
- False negativity not acceptable
 - Risk for FN too high \rightarrow always treatment

Specificity of PCR; in diagnostics

Cases	No of test with Positive result	No of tests with Negative results	total
Number of illness	TP	FN	TP+FN
Number of Non illness	FP	TN	FP+TN
total	TP+FP	FN+TN	TP+FN+FP+TN

TP= "true positive"; ziektegevallen; correct vastgesteld met test FN= "false negative"; ziektegevallen; foutief als ziektevrij bestempeld FP= "false positive; ziektevrij, foutief als ziektegeval bestempeld TN= "true negative"; ziektevrij, correct vastgesteld met test

Diagnostic sensitivity and - specificity

- Percentage diagnostic sensitivity

 Level in which all "ill people" can be addressed correctly by the test
 TP/(TP +FN)X100
- Percentage diagnostic specificity
 - Level in which all "helathy people" can be addressed correctly by the test TN/(TN+FP)X100